Mutagenesis of odorant coreceptor Orco reveals the distinct role of olfaction between sexes in Spodoptera frugiperda
Odorant receptor (OR) is crucial for insects to detect and recognize external chemical cues closely related to their survival. The insect OR forms a heteromeric complex composed of a ligand-specific receptor and a ubiquitously odorant receptor coreceptor (Orco). This study used the CRISPR/Cas9 technique to knock out (KO) Orco and reveal its essential role in acting on OR-meditated olfactory behavior in a critical invasive agricultural pest, the fall armyworm (FAW), Spodoptera frugiperda. Electroantennogram (EAG) results suggested that the Orco mutants of both male and female moths severely reduced their electrophysiological responses to the eight tested plant volatiles and two sex pheromones. However, the Orco gene played distinct roles in mating behavior between sexes: the mating behavior was fully disrupted in mutated males but not in mutated females. The oviposition result indicated that the Orco KO females displayed reduced egg laying by 24.1% compared with the mated wild type (WT) females. Overall, these results strongly suggest that Orco is an excellent target for disrupting FAW’s normal behavior and provides a feasible pest control approach.
Genome-wide detection for runs of homozygosity analysis in three pig breeds from Chinese Taihu Basin and Landrace pigs by SLAF-seq data
Erhualian (E), Meishan (MS) and Mi (MI) pigs are excellent indigenous pig breeds in Chinese Taihu Basin, which have made great contributions to the genetic improvement of commercial pigs. Investigation of the genetic structure and inbreeding level of the 3 pig breeds is of great significance for the sustainable breeding of commercial pigs. The length and number of runs of homozygosity (ROH) as well as the frequency of genomes covered by ROH can be used as indicators to evaluate the level of inbreeding and the origin of the population. In this study, the ROH characteristics of E, MS, MI and Landrace (L) pigs were analyzed by SLAF-seq data, and the inbreeding coefficient based on ROH (FROH) was calculated. In addition, we have identified candidate genes in the genomic regions associated with ROH. A total of 10 568 ROH were detected in 116 individuals of 4 pig breeds. The analysis showed that there were significant differences in genetic structure between 3 Taihu Basin pig breeds and L, and the genetic structure of E and MI was similar. The results of FROH showed that the inbreeding level of MS was the highest (0.25±0.07), while E and MI were lower than L. Compared with the other 3 pig populations, MS showed a higher frequency of long ROH (>5 Mb), indicating higher inbreeding in MS in recent generations. A large number of candidate genes related to reproductive traits are located in the genomic regions with a high frequency of ROH, and these genes are expected to be used as candidate genes in marker-assisted selection (MAS) breeding programs. Our findings can provide theoretical support for genetic conservation and genetic improvement of 3 pig breeds in Chinese Taihu Basin.