Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
The effects of soil properties, cropping systems and geographic location on soil prokaryotic communities in four maize production regions across China 
TIAN Xue-liang, LIU Jia-jia, LIU Quan-cheng, XIA Xin-yao, PENG Yong, Alejandra I. HUERTA, YAN Jian-bing, LI Hui, LIU Wen-de
2022, 21 (7): 2145-2157.   DOI: 10.1016/S2095-3119(21)63772-3
Abstract225)      PDF in ScienceDirect      
The diversity of prokaryotic communities in soil is shaped by both biotic and abiotic factors.  However, little is known about the major factors shaping soil prokaryotic communities at a large scale in agroecosystems.  To this end, we undertook a study to investigate the impact of maize production cropping systems, soil properties and geographic location (latitude and longitude) on soil prokaryotic communities using metagenomic techniques, across four distinct maize production regions in China.  Across all study sites, the dominant prokaryotes in soil were Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria, Gemmatimonadetes, Acidobacteria, and Actinobacteria.  Non-metric multidimensional scaling revealed that prokaryotic communities clustered into the respective maize cropping systems in which they resided.  Redundancy analysis (RDA) showed that soil properties especially pH, geographic location and cropping system jointly determined the diversity of the prokaryotic communities.  The functional genes of soil prokaryotes from these samples were chiefly influenced by latitude, soil pH and cropping system, as revealed by RDA analysis.  The abundance of genes in some metabolic pathways, such as genes involved in microbe–microbe interactions, degradation of aromatic compounds, carbon fixation pathways in prokaryotes and microbial metabolism were markedly different across the four maize production regions.  Our study indicated that the combination of soil pH, cropping system and geographic location significantly influenced the prokaryotic community and the functional genes of these microbes.  This work contributes to a deeper understanding of the composition and function of the soil prokaryotic community across large-scale production systems such as maize.

Reference | Related Articles | Metrics
Integrated pest management programme for cereal blast fungus Magnaporthe oryza
ZHANG Hai-feng, Tofazzal ISLAM, LIU Wen-de
2022, 21 (12): 3420-3433.   DOI: 10.1016/j.jia.2022.08.056
Abstract414)      PDF in ScienceDirect      

Magnaporthe oryzae, the causal agent of blast diseases, is a destructive filamentous fungus that infects many plants including most economically important food crops, rice, wheat, pearl millet and finger millet.  Magnaporthe oryzae has numerous pathotypes because of its high host-specificity in the field.  The Oryza pathotype (MoO) of Moryzae is the most devastating pathogen of rice, causing 10–30% yield loss in the world.  On the other hand, the Triticum pathotype (MoT) causes blast disease in wheat, which is now a serious threat to wheat production in some South American countries, Bangladesh and Zambia.  Because of low fungicide efficacy against the blast diseases and lack of availability of resistant varieties, control of rice and wheat blast diseases is difficult.  Therefore, an integrated management programme should be adopted to control these two diseases in the field.  Here, we introduced and summarized the classification, geographical distribution, host range, disease symptoms, biology and ecology, economic impact, and integrated pest management (IPM) programme of both rice and wheat blast diseases.Magnaporthe oryzae, the causal agent of blast diseases, is a destructive filamentous fungus that infects many plants including most economically important food crops, rice, wheat, pearl millet and finger millet.  Magnaporthe oryzae has numerous pathotypes because of its high host-specificity in the field.  The Oryza pathotype (MoO) of Moryzae is the most devastating pathogen of rice, causing 10–30% yield loss in the world.  On the other hand, the Triticum pathotype (MoT) causes blast disease in wheat, which is now a serious threat to wheat production in some South American countries, Bangladesh and Zambia.  Because of low fungicide efficacy against the blast diseases and lack of availability of resistant varieties, control of rice and wheat blast diseases is difficult.  Therefore, an integrated management programme should be adopted to control these two diseases in the field.  Here, we introduced and summarized the classification, geographical distribution, host range, disease symptoms, biology and ecology, economic impact, and integrated pest management (IPM) programme of both rice and wheat blast diseases.


Reference | Related Articles | Metrics
Bioinformatic analysis and functional characterization of the cfem proteins in maize anthracnose fungus Colletotrichum graminicola
GONG An-dong, JING Zhong-ying, ZHANG Kai, TAN Qing-qun, WANG Guo-liang, LIU Wen-de
2020, 19 (2): 541-550.   DOI: 10.1016/S2095-3119(19)62675-4
Abstract161)      PDF in ScienceDirect      
Fungal secreted proteins that contain the Common in Fungal Extracellular Membrane (CFEM) domain are important for pathogenicity.  The hemibiotrophic fungus Colletotrichum graminicola causes the serious anthracnose disease of maize.  In this study, we identified 24 CgCFEM proteins in the genome of C. graminicola.  Phylogenic analysis revealed that these 24 proteins (CgCFEM1–24) can be divided into 2 clades based on the presence of the trans-membrane domain.  Sequence alignment analysis indicated that the amino acids of the CFEM domain are highly conserved and contain 8 spaced cysteines, with the exception that CgCFEM1 and CgCFEM24 lack 1 and 2 cysteines, respectively.  Ten CgCFEM proteins with a signal peptide and without the trans-membrane domain were considered as candidate effectors and, thus were selected for structural prediction and functional analyses.  The CFEM domain in the candidate effectors can form a helical-basket structure homologous to the Csa2 protein in Candida albicans, which is responsible for haem acquisition and pathogenicity.  Subcellular localization analysis revealed that these effectors accumulate in the cell membrane, nucleus, and cytosolic bodies.  Additionally, 5 effectors, CgCFEM6, 7, 8, 9 and 15, can suppress the BAX-induced programmed cell death in Nicotiana benthamiana with or without the signal peptide.  These results demonstrate that these 10 CgCFEM candidate effectors with different structures and subcellular localizations in host cells may play important roles during the pathogenic processes on maize plants.
 
Reference | Related Articles | Metrics