Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Field mold stress induced catabolism of storage reserves in soybean seed and the resulting deterioration of seed quality in the field
DENG Jun-cai, LI Xiao-man, XIAO Xin-li, WU Hai-jun, YANG Cai-qiong, LONG Xi-yang, ZHANG Qi-hui, Nasir Iqbal, WANG Xiao-chun, YONG Tai-wen, DU Jun-bo, YANG Feng, LIU Wei-guo, ZHANG Jing, WU Xiao-ling, WU Yu-shan, YANG Wen-yu, LIU Jiang
2022, 21 (2): 336-350.   DOI: 10.1016/S2095-3119(20)63594-8
Abstract204)      PDF in ScienceDirect      
Excessive rainfall provides a favorable condition for field mold infection of plants, which triggers field mold (FM) stress.  If FM stress occurs during the late maturation stage of soybean seed, it negatively affects seed yield and quality.  To investigate the responses of soybean seed against FM stress and identify the underlying biochemical pathways involved, a greenhouse was equipped with an artificial rain producing system to allow the induction of mold growth on soybean seed.  The induced quality changes and stress responses were revealed on the levels of both transcriptome and metabolome.  The results showed that soybean seeds produced under FM stress conditions had an abnormal and inferior appearance, and also contained less storage reserves, such as protein and polysaccharide.  Transcriptional analysis demonstrated that genes involved in amino acid metabolism, glycolysis, tricarboxylic acid, β-oxidation of fatty acids, and isoflavone biosynthesis were induced by FM stress.  These results were supported by a multiple metabolic analysis which exhibited increases in the concentrations of a variety of amino acids, sugars, organic acids, and isoflavones, as well as reductions of several fatty acids.  Reprogramming of these metabolic pathways mobilized and consumed stored protein, sugar and fatty acid reserves in the soybean seed in order to meet the energy and substrate demand on the defense system, but led to deterioration of seed quality.  In general, FM stress induced catabolism of storage reserves and diminished the quality of soybean seed in the field.  This study provides a more profound insight into seed deterioration caused by FM stress.
Reference | Related Articles | Metrics
Rejuvenating soybean (Glycine max L.) growth and development through slight shading stress
WEN Bing-xiao, Sajad Hussain, YANG Jia-yue, WANG Shan, ZHANG Yi, QIN Si-si, XU Mei, YANG Wen-yu, LIU Wei-guo
2020, 19 (10): 2439-2450.   DOI: 10.1016/S2095-3119(20)63159-8
Abstract123)      PDF in ScienceDirect      
The impact of increased shading stress on agronomic traits, photosynthetic performance and antioxidants activities in leaves of two soybeans cultivars (D16 and E93) was studied.  Soybean seedlings were grown in pots and exposed to no shade (S0), slight shade (S1), moderate shade (S2), and heavy shade (S3).  Our findings showed that under the S3 in both cultivars, leaf fresh weight (LFW), specific leaf area (SLA) and leaf thickness decreased significantly, accompanied by a reduction in photochemical parameters including the maximum quantum yield (Fv/Fm) and electron transport rate (ETR).  Furthermore, compared to S0, S1 significantly increased the ETR, sucrose content and the activity of catalase (CAT) in both D16 and E93 cultivars while S2 and S3 decreased the activity.  However, under all treatments of shading stress, the antioxidant activities of superoxide dismutase (SOD) and peroxidase (POD) were lowered in both cultivars.  Such morphological and physiological plasticity to adapt S1 compensates for the decrease in biomass and leads to seed weight compared to that obtained with an amount of normal light.  Through configuring the space in the intercropping systems, S1 could be helpful for optimum growth and yield.  Redesigning photosynthesis through S1 for the intercropping systems could be a smart approach.
Reference | Related Articles | Metrics
iTRAQ protein profile analysis of soybean stems reveals new aspects critical for lodging in intercropping systems
LIU Wei-guo, WEN Bing-xiao, ZHOU Tao, WANG Li, GAO Yang, LI Shu-xian, QIN Si-si, LIU Jiang, YANG Wen-yu
2019, 18 (9): 2029-2040.   DOI: 10.1016/S2095-3119(18)62123-9
Abstract144)      PDF in ScienceDirect      
Soybean is often intercropped with maize, sugarcane, and sorghum.  Because of the shade coming from the latter, the soybean stem lodging is often a very serious problem in intercropping systems.  The aim of this study is to characterize the possible mechanisms in the stem of shade-induced promotion of seedling soybean lodging in intercropping systems at the proteome level.  We found that the soybean stem became slender and prone to lodging when it was planted with maize in an intercropping system.  The inhibition of lignin biosynthesis and lack of photosynthate (soluble sugar) for the biosynthesis of the cell wall led to the lower internode breaking strength.  A total of 317 proteins were found to be affected in the soybean stem in response to shade.  Under the shade stress, the down-expression of key enzymes involving the phenylpropanoid metabolic pathway inhibited lignin biosynthesis.  The up-regulation of expansin and XTHs protein expression relaxed the cell wall and promoted the elongation of internodes.  Although the expression of the enzymes involving sucrose synthesis increased in the soybean stem, the lack of a carbon source prevented rapid stem growth.  This metabolic deficit is the principal cause of the lower cellulose content in the stem of intercropped soybean, which leads to weakened stems and a propensity for lodging.
Reference | Related Articles | Metrics
Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community
FU Zhi-dan, ZHOU Li, CHEN Ping, DU Qing, PANG Ting, SONG Chun, WANG Xiao-chun, LIU Wei-guo, YANG Wen-yu, YONG Tai-wen
2019, 18 (9): 2006-2018.   DOI: 10.1016/S2095-3119(18)62114-8
Abstract163)      PDF in ScienceDirect      
Maize-soybean relay intercropping is an effective approach to improve the crop yield and nutrient use efficiency, which is widely practiced by farmers in southwest of China.  To elucidate the characteristics of different planting patterns on crop nutrient uptake, soil chemical properties, and soil bacteria community in maize-soybean relay intercropping systems, we conducted a field experiment in 2015–2016 with single factor treatments, including monoculture maize (MM), monoculture soybean (MS), maize-soybean relay intercropping (IMS), and fallow (CK).  The results showed that the N uptake of maize grain increased in IMS compared with MM.  Compared with MS, the yield and uptake of N, P, and K of soybean grain were increased by 25.5, 24.4, 9.6, and 22.4% in IMS, respectively, while the N and K uptakes in soybean straw were decreased in IMS.  The soil total nitrogen, available phosphorus, and soil organic matter contents were significantly higher in IMS than those of the corresponding monocultures and CK.  Moreover, the soil protease, soil urease, and soil nitrate reductase activities in IMS were higher than those of the corresponding monocultures and CK.  The phyla Proteobacteria, Acidobacteria, Chloroflexi, and Actinobacteria dominated in all treatments.  Shannon’s index in IMS was higher than that of the corresponding monocultures and CK.  The phylum Proteobacteria proportion was positively correlated with maize soil organic matter and soybean soil total nitrogen content, respectively.  These results indicated that the belowground interactions increased the crop nutrient (N and P) uptake and soil bacterial community diversity, both of which contributed to improved soil nutrient management for legume-cereal relay intercropping systems.
Reference | Related Articles | Metrics
Weak stem under shade reveals the lignin reduction behavior
Sajad Hussain, Nasir Iqbal, PANG Ting, Muhammad Naeem Khan, LIU Wei-guo, YANG Wen-yu
2019, 18 (3): 493-505.   DOI: 10.1016/S2095-3119(18)62111-2
Abstract204)      PDF (712KB)(181)      
Shades caused by neighboring tall plants in intercropping systems and weak sunlight are constraints in yield optimization.  Shade influences many aspects of plant growth and development, leading to weak stems and susceptibility to lodging.  The plant cell wall is composed of certain proteins that allow the walls to stretch out, a process called cell wall loosening.  Shade affects anatomical, morphological, and physiological traits of plants, thus reducing the physical strength of the stem in crops by changing the loosening of cell walls.  Flexibility of cells facilitates further modifications such as wall loosening.  In addition, shade stress causes increased internode length, and reduced xylem synthesis and photosynthesis.  In shaded plants, lignin deposition in vascular bundles and sclerenchyma cells of stems is decreased.  Lignin is a light sensitive phenolic compound and shading decreases the transcript abundance of several phenolic compound (flavone and lignin) related genes.  Shading significantly influences the metabolic activities of phenylalanine ammonia-lyase (PAL), peroxidase (POD), 4-coumarate: CoA ligase (4CL), and cinnamyl alcohol dehydrogenase (CAD) involved in lignin biosynthesis.  Furthermore, suppression of lignin biosynthesis activities by abiotic stresses causes abnormal phenotypes such as collapsed xylem, bent stems, and growth retardation.  In this review, the underlying mechanisms illustrate that under shading conditions reduced lignin content results in slender, weak, and unstable stems.  The objective of this review is to elaborate lignin biosynthesis and its variability under stressful environmental conditions, especially in shade stress environments.  The effects of shade on stem lignin metabolism are discussed on the morphogenetic, physiological, and proteomic levels.
 
Reference | Related Articles | Metrics
Rhizosphere soil bacterial community composition in soybean genotypes and feedback to soil P availability
ZHOU Tao, WANG Li, DU Yong-li, LIU Ting, LI Shu-xian, GAO Yang, LIU Wei-guo, YANG Wen-yu
2019, 18 (10): 2230-2241.   DOI: 10.1016/S2095-3119(18)62115-X
Abstract143)      PDF in ScienceDirect      
Soil with low phosphorus (P) availability and organic matter contents exists in large area of southwest of China, but some soybean genotypes still show well adaptations to this low yield farmland.  However, to date, the underlying mechanisms of how soybean regulates soil P availability still remains unclear, like microbe-induced changes.  The objective of the present study was to compare the differences of rhizosphere bacterial community composition between E311 and E109 in P-sufficiency (10.2 mg kg–1) and P-insufficiency (5.5 mg kg–1), respectively, which then feedback to soil P availability.  In P-sufficiency, significant differences of the bacterial community composition were observed, with fast-growth bacterial phylum Proteobacteria, genus Dechloromonas, Pseudomonas, Massilia, and Propionibacterium that showed greater relative abundances in E311 compared to E109, while in P-insufficiency were not.  A similar result was obtained  that E311 and E109 were clustered together in P-insufficiency rather than in P-sufficiency by using principal component analysis and hierarchical clustering analysis.  The quadratic relationships between bacterial diversity and soil P availability in rhizosphere were analyzed, confirming that bacterial diversity enhanced the soil P availability.  Moreover, the high abundance of Pseudomonas and Massilia in the rhizosphere of E311 might increased the P availability.  In the present study, the soybean E311 showed capability of shaping rhizosphere bacterial diversity, and subsequently, increasing soil P availability.  This study provided a strategy for rhizosphere management through soybean genotype selection and breeding to increase P use efficiency, or upgrade middle or low yield farmland.
Reference | Related Articles | Metrics
Shade stress decreases stem strength of soybean through restraining lignin biosynthesis
LIU Wei-guo, Sajad Hussain, LIU Ting, ZOU Jun-lin, REN Meng-lu, ZHOU Tao, LIU Jiang, YANG Feng, YANG Wen-yu
2019, 18 (1): 43-53.   DOI: 10.1016/S2095-3119(18)61905-7
Abstract286)      PDF in ScienceDirect      
Lodging is the most important constraint for soybean growth at seedling stage in maize-soybean relay strip intercropping system.  In the field experiments, three soybean cultivars Nandou 032-4 (shade susceptible cultivar; B1), Jiuyuehuang (moderately shade tolerant cultivar; B2), and Nandou 12 (shade tolerant cultivar; B3) were used to evaluate the relationship between stem stress and lignin metabolism in the stem of soybean.  Results showed that the intercropped soybean was in variable light condition throughout the day time and co-growth stage with maize.  The xylem area and cross section ratio played a main role to form the stem stress.  The B3 both in intercropping and monocropping expressed a high stem stress with higher xylem area, lignin content, and activity of enzymes (phenylalanine ammonia-lyase (PAL), 4-coumarate: CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD)) than those of B1 and B2.  Among the soybean cultivars and planting pattern, lignin content was positively correlated with stem stress.  However, a negative correlation was found between lignin content and actual rate of lodging.  In conclusion, the shade tolerant soybean cultivar had larger xylem area, higher lignin content and activities of CAD, 4CL, PAL, and POD than other soybean cultivars in intercropping.  The lodging in maize-soybean intercropping can be minimized by planting shade tolerant and lodging resistant cultivar of soybean.  The lignin content in stem could be a useful indicator for the evaluation of lodging resistance of soybean in intercropping and activities of enzymes were the key factors that influence the lignin biosynthesis.
Reference | Related Articles | Metrics
Effect of shade stress on lignin biosynthesis in soybean stems
LIU Wei-guo, REN Meng-lu, LIU Ting, DU Yong-li, ZHOU Tao, LIU Xiao-ming, LIU Jiang, Sajad Hussain, YANG Wen-yu
2018, 17 (07): 1594-1604.   DOI: 10.1016/S2095-3119(17)61807-0
Abstract509)      PDF in ScienceDirect      
To clarify how shade stress affects lignin biosynthesis in soybean stem, two varieties, Nandou 12 (shade tolerant) and Nan 032-4 (shade susceptible) grew under normal light and shade conditions (the photosynthetically active radiation and the ratio of red:far-red were lower than normal light condition).  Lignin accumulation, transcripts of genes involved in lignin biosynthesis, and intermediates content of lignin biosynthesis were analyzed.  Both soybean varieties suffered shade stress had increased plant heights and internode lengths, and reduced stem diameters and lignin accumulation in stems.  The expression levels of lignin-related genes were significantly influenced by shade stress, with interactions between the light environment and variety.  The gene of 3-hydroxylase (C3H), cinnamoyl-CoA reductase (CCR), caffeoyl-CoA O-methyltransferase (CCoAOMT), and peroxidase (POD) attributed to lignin biosynthesis under shade stress, and the down-regulation of these genes resulted in lower caffeic, sinapic, and ferulic acid levels, which caused a further decrease in lignin biosynthesis.  Under shade stress, the shade tolerant soybean variety (Nandou 12) showed stiffer stems, higher lignin content, and greater gene expression level and higher metabolite contents than shade susceptible one.  So these characteristics could be used for screening the shade-tolerant soybean for intercropping.
 
Reference | Related Articles | Metrics
Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability
DU Jun-bo, HAN Tian-fu, GAI Jun-yi, YONG Tai-wen, SUN Xin, WANG Xiao-chun, YANG Feng, LIU Jiang, SHU Kai, LIU Wei-guo, YANG Wen-yu
2018, 17 (04): 747-754.   DOI: 10.1016/S2095-3119(17)61789-1
Abstract1054)      PDF in ScienceDirect      
Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogical field lay-out of crops, low economic value, and labor deficiency, which cannot balance the crop production and agricultural sustainability. In view of this, we developed a novel soybean strip intercropping model using maize as the partner, the regular maize-soybean strip intercropping mainly popularized in northern China and maize-soybean relay-strip intercropping principally extended in southwestern China. Compared to the traditional maize-soybean intercropping systems, the main innovation of field lay-out style in our present intercropping systems is that the distance of two adjacent maize rows are shrunk as a narrow strip, and a strip called wide strip between two adjacent narrow strips is expanded reserving for the growth of two or three rows of soybean plants.  The distance between outer rows of maize and soybean strips are expanded enough for light use efficiency improvement and tractors working in the soybean strips.  Importantly, optimal cultivar screening and increase of plant density achieved a high yield of both the two crops in the intercropping systems and increased land equivalent ratio as high as 2.2.  Annually alternative rotation of the adjacent maize- and soybean-strips increased the grain yield of next seasonal maize, improved the absorption of nitrogen, phosphorus, and potasium of maize, while prevented the continuous cropping obstacles.  Extra soybean production was obtained without affecting maize yield in our strip intercropping systems, which balanced the high crop production and agricultural sustainability.
Reference | Related Articles | Metrics
Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system
YONG Tai-wen, CHEN Ping, DONG Qian, DU Qing, YANG Feng, WANG Xiao-chun, LIU Wei-guo, YANG Wen-yu
2018, 17 (03): 664-676.   DOI: 10.1016/S2095-3119(17)61836-7
Abstract779)      PDF in ScienceDirect      
In China, the abuse of chemical nitrogen (N) fertilizer results in decreasing N use efficiency (NUE), wasting resources and causing serious environmental problems.  Cereal-legume intercropping is widely used to enhance crop yield and improve resource use efficiency, especially in Southwest China.  To optimize N utilization and increase grain yield, we conducted a two-year field experiment with single-factor randomized block designs of a maize-soybean intercropping system (IMS).  Three N rates, NN (no nitrogen application), LN (lower N application: 270 kg N ha–1), and CN (conventional N application: 330 kg N ha–1), and three topdressing distances of LN (LND), e.g., 15 cm (LND1), 30 cm (LND2) and 45 cm (LND3) from maize rows were evaluated.  At the beginning seed stage (R5), the leghemoglobin content and nitrogenase activity of LND3 were 1.86 mg plant–1 and 0.14 mL h–1 plant–1, and those of LND1 and LND2 were increased by 31.4 and 24.5%, 6.4 and 32.9% compared with LND3, respectively.  The ureide content and N accumulation of soybean organs in LND1 and LND2 were higher than those of LND3.  The N uptake, NUE and N agronomy efficiency (NAE) of IMS under CN were 308.3 kg ha–1, 28.5%, and 5.7 kg grain kg–1 N, respectively; however, those of LN were significantly increased by 12.4, 72.5, and 51.6% compared with CN, respectively.  The total yield in LND1 and LND2 was increased by 12.3 and 8.3% compared with CN, respectively.  Those results suggested that LN with distances of 15–30 cm from the topdressing strip to the maize row was optimal in maize-soybean intercropping.  Lower N input with an optimized fertilization location for IMS increased N fixation and N use efficiency without decreasing grain yield.
Reference | Related Articles | Metrics
Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems
WU Yu-shan, YANG Feng, GONG Wan-zhuo, Shoaib Ahmed, FAN Yuan-fang, WU Xiao-ling, YONG Tai-wen, LIU Wei-guo, SHU Kai, LIU Jiang, DU Jun-bo, YANG Wen-yu
2017, 16 (06): 1331-1340.   DOI: 10.1016/S2095-3119(16)61525-3
Abstract917)      PDF in ScienceDirect      
Soybean is one of the major oil seed crops, which is usually intercropped with other crops to increase soybean production area and yield.  However, soybean is highly sensitive to shading.  It is unclear if soybean morphology responds to shading (i.e., shade tolerance or avoidance) and which features may be suitable as screening materials in relay strip intercropping.  Therefore, in this study, various agronomic characteristics of different soybean genotypes were analyzed under relay intercropping conditions.  The soybean materials used in this study exhibited genetic diversity, and the coefficient of variations of the agronomic parameters ranged from 13.84 to 72.08% during the shade period and from 6.44 to 52.49% during the maturity period.  The ratios of shading to full irradiance in stem mass fraction (SMF) were almost greater than 1, whereas opposite results were found in the leaves.  Compared with full irradiance, the average stem length (SL), leaf area ratio (LAR) and specific leaf area (SLA) for the two years (2013 and 2014) increased by 0.78, 0.47 and 0.65 under shady conditions, respectively.  However, the stem diameter (SD), total biomass (TB), leaf area (LA), number of nodes (NN) on the main stem, and number of branches (BN) all decreased.  During the shady period, the SL and SMF exhibited a significant negative correlation with yield, and the SD exhibited a significant positive correlation with yield.  The correlation between the soybean yield and agronomic parameters during the mature period, except for SL, the first pod height (FPH), 100-seed weight (100-SW), and reproductive growth period (RGP), were significant (P<0.01), especially for seed weight per branch (SWB), pods per plant (PP), BN, and vegetative growth period (VGP).  These results provide an insight into screening the shade tolerance of soybean varieties and can be useful in targeted breeding programs of relay intercropped soybeans.  
Reference | Related Articles | Metrics