Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Effects of uniconazole with or without micronutrient on the lignin biosynthesis, lodging resistance, and winter wheat production in semiarid regions
Irshad AHMAD, MENG Xiang-ping, Muhammad KAMRAN, Shahzad ALI, Shakeel AHMAD, LIU Tie-ning, CAI Tie, HAN Qing-fang
2020, 19 (1): 62-77.   DOI: 10.1016/S2095-3119(19)62632-8
Abstract191)      PDF in ScienceDirect      
Lodging stress results in grain yield and quality reduction in wheat.  Uniconazole, a potential plant growth regulator significantly enhances lignin biosynthesis and thus provides mechanical strength to plants in order to cope with lodging stress.  A field study was conducted during the 2015–2016 and 2016–2017 growing seasons, to investigate the effects of uniconazole sole application or with micronutrient on the lignin biosynthesis, lodging resistance, and production of winter wheat.  In the first experiment, uniconazole at concentrations of 0 (CK), 15 (US1), 30 (US2), and 45 (US3) mg L–1 was applied as sole seed soaking, while in the second experiment with manganese (Mn) at concentration of 0.06 g L–1 Mn, 0.06 g L–1 Mn+15 mg L–1 uniconazole (UMS1), 0.06 g L–1 Mn+30 mg L–1 uniconazole (UMS2), and 0.06 g L–1 Mn+45 mg L–1 uniconazole (UMS3), respectively.  Uniconazole sole application or with micronutrient significantly increased the lignin content by improving the lignin-related enzyme activities of phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, tyrosine ammonia-lyase, and peroxidase, ameliorating basal internode characteristics, and breaking strength.  The spike length, spike diameter, spikes/plant, weight/spike, yield/spike, and grain yield increased and then decreased with uniconazole application at a higher concentration, where their maximum values were recorded with UMS2 and US2 treatments.  The lignin accumulation was positively correlated with lignin-related enzyme activities and breaking strength while, negatively correlated with lodging rate.  Uniconazole significantly improved the lignin biosynthesis, lodging resistance, and grain yield of winter wheat and the treatments which showed the greatest effects were uniconazole seed soaking with micronutrient at a concentration of 30 mg L–1 and 0.06 g L–1, and uniconazole sole seed soaking at a concentration of 30 mg L–1.
Reference | Related Articles | Metrics
Nitrate leaching of winter wheat grown in lysimeters as affected by fertilizers and irrigation on the North China Plain
GU Li-min, LIU Tie-ning, ZHAO Jun, DONG Shu-ting, LIU Peng, ZHANG Ji-wang, ZHAO Bin
2015, 14 (2): 374-388.   DOI: 10.1016/S2095-3119(14)60747-4
Abstract2577)      PDF in ScienceDirect      
Proper application of nitrogen (N) fertilizers and irrigation management are important production practices that can reduce nitrate leaching into groundwater and improve the N use efficiency (NUE). A lysimeter/rain shelter facility was used to study effects of the rate of N fertilization, type of N fertilizer, and irrigation level on key aspects of winter wheat production over three growing seasons (response variables were nitrate transport, N leaching, and NUE). Results indicated that nitrate concentration in the soil profile and N leaching increased with the rate of N fertilization. At the end of the third season, nitrate concentration in the top 0–75 cm layer of soil was higher with manure treatment while urea treatments resulted in higher concentrations in the 100–200 cm layer. With normal irrigation, 3.4 to 15.3% of N from applied fertilizer was leached from the soil, yet no leaching occurred under a stress irrigation treatment. The manure treatment experienced less N leaching than the urea treatment in all cases except for the 180 kg N ha-1 rate in 2011–2012 (season 3). In terms of grain yield (GY), dry matter (DM) or NUE parameters, values for the manure treatment were lower than for the urea treatment in 2009–2010 (season 1), yet were otherwise higher for urea treatment in season 3. GY and crop nitrogen uptake (NU) were elevated when the rate of N fertilizer increased, while the NUE decreased; GY, DM, and NU increased with the amount of irrigation. Data indicated that reduced rates of N fertilization combined with increased manure application and proper irrigation management can lower nitrate levels in the subsoil and reduce potential N leaching into groundwater.
Reference | Related Articles | Metrics