导航切换
Journal of Integrative Agriculture
JIA Home
About JIA
Description
Video introduction
Editor-in-chief
Editorial board
Guideline of JIA editorial board
Editorial board
Youth Editorial Board
For authors
Instruction for authors
Title page
Copyright agreement
Templates
Endnote
Subscription
Contact
Journals
Publication Years
Keywords
Search within results
(((LIU Jiang[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
Title
Author
Institution
Keyword
Abstract
PACS
DOI
Please wait a minute...
For Selected:
Download Citations
EndNote
Ris
BibTeX
Toggle Thumbnails
Select
Field mold stress induced catabolism of storage reserves in soybean seed and the resulting deterioration of seed quality in the field
DENG Jun-cai, LI Xiao-man, XIAO Xin-li, WU Hai-jun, YANG Cai-qiong, LONG Xi-yang, ZHANG Qi-hui, Nasir Iqbal, WANG Xiao-chun, YONG Tai-wen, DU Jun-bo, YANG Feng, LIU Wei-guo, ZHANG Jing, WU Xiao-ling, WU Yu-shan, YANG Wen-yu, LIU Jiang
2022, 21 (
2
): 336-350. DOI:
10.1016/S2095-3119(20)63594-8
Abstract
(
204
)
PDF in ScienceDirect
Excessive rainfall provides a favorable condition for field mold infection of plants, which triggers field mold (FM) stress. If FM stress occurs during the late maturation stage of soybean seed, it negatively affects seed yield and quality. To investigate the responses of soybean seed against FM stress and identify the underlying biochemical pathways involved, a greenhouse was equipped with an artificial rain producing system to allow the induction of mold growth on soybean seed. The induced quality changes and stress responses were revealed on the levels of both transcriptome and metabolome. The results showed that soybean seeds produced under FM stress conditions had an abnormal and inferior appearance, and also contained less storage reserves, such as protein and polysaccharide. Transcriptional analysis demonstrated that genes involved in amino acid metabolism, glycolysis, tricarboxylic acid, β-oxidation of fatty acids, and isoflavone biosynthesis were induced by FM stress. These results were supported by a multiple metabolic analysis which exhibited increases in the concentrations of a variety of amino acids, sugars, organic acids, and isoflavones, as well as reductions of several fatty acids. Reprogramming of these metabolic pathways mobilized and consumed stored protein, sugar and fatty acid reserves in the soybean seed in order to meet the energy and substrate demand on the defense system, but led to deterioration of seed quality. In general, FM stress induced catabolism of storage reserves and diminished the quality of soybean seed in the field. This study provides a more profound insight into seed deterioration caused by FM stress.
Reference
|
Related Articles
|
Metrics
Select
iTRAQ protein profile analysis of soybean stems reveals new aspects critical for lodging in intercropping systems
LIU Wei-guo, WEN Bing-xiao, ZHOU Tao, WANG Li, GAO Yang, LI Shu-xian, QIN Si-si, LIU Jiang, YANG Wen-yu
2019, 18 (
9
): 2029-2040. DOI:
10.1016/S2095-3119(18)62123-9
Abstract
(
144
)
PDF in ScienceDirect
Soybean is often intercropped with maize, sugarcane, and sorghum. Because of the shade coming from the latter, the soybean stem lodging is often a very serious problem in intercropping systems. The aim of this study is to characterize the possible mechanisms in the stem of shade-induced promotion of seedling soybean lodging in intercropping systems at the proteome level. We found that the soybean stem became slender and prone to lodging when it was planted with maize in an intercropping system. The inhibition of lignin biosynthesis and lack of photosynthate (soluble sugar) for the biosynthesis of the cell wall led to the lower internode breaking strength. A total of 317 proteins were found to be affected in the soybean stem in response to shade. Under the shade stress, the down-expression of key enzymes involving the phenylpropanoid metabolic pathway inhibited lignin biosynthesis. The up-regulation of expansin and XTHs protein expression relaxed the cell wall and promoted the elongation of internodes. Although the expression of the enzymes involving sucrose synthesis increased in the soybean stem, the lack of a carbon source prevented rapid stem growth. This metabolic deficit is the principal cause of the lower cellulose content in the stem of intercropped soybean, which leads to weakened stems and a propensity for lodging.
Reference
|
Related Articles
|
Metrics
Select
Shade stress decreases stem strength of soybean through restraining lignin biosynthesis
LIU Wei-guo, Sajad Hussain, LIU Ting, ZOU Jun-lin, REN Meng-lu, ZHOU Tao, LIU Jiang, YANG Feng, YANG Wen-yu
2019, 18 (
1
): 43-53. DOI:
10.1016/S2095-3119(18)61905-7
Abstract
(
286
)
PDF in ScienceDirect
Lodging is the most important constraint for soybean growth at seedling stage in maize-soybean relay strip intercropping system. In the field experiments, three soybean cultivars Nandou 032-4 (shade susceptible cultivar; B1), Jiuyuehuang (moderately shade tolerant cultivar; B2), and Nandou 12 (shade tolerant cultivar; B3) were used to evaluate the relationship between stem stress and lignin metabolism in the stem of soybean. Results showed that the intercropped soybean was in variable light condition throughout the day time and co-growth stage with maize. The xylem area and cross section ratio played a main role to form the stem stress. The B3 both in intercropping and monocropping expressed a high stem stress with higher xylem area, lignin content, and activity of enzymes (phenylalanine ammonia-lyase (PAL), 4-coumarate: CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and peroxidase (POD)) than those of B1 and B2. Among the soybean cultivars and planting pattern, lignin content was positively correlated with stem stress. However, a negative correlation was found between lignin content and actual rate of lodging. In conclusion, the shade tolerant soybean cultivar had larger xylem area, higher lignin content and activities of CAD, 4CL, PAL, and POD than other soybean cultivars in intercropping. The lodging in maize-soybean intercropping can be minimized by planting shade tolerant and lodging resistant cultivar of soybean. The lignin content in stem could be a useful indicator for the evaluation of lodging resistance of soybean in intercropping and activities of enzymes were the key factors that influence the lignin biosynthesis.
Reference
|
Related Articles
|
Metrics
Select
Effect of shade stress on lignin biosynthesis in soybean stems
LIU Wei-guo, REN Meng-lu, LIU Ting, DU Yong-li, ZHOU Tao, LIU Xiao-ming, LIU Jiang, Sajad Hussain, YANG Wen-yu
2018, 17 (
07
): 1594-1604. DOI:
10.1016/S2095-3119(17)61807-0
Abstract
(
509
)
PDF in ScienceDirect
To clarify how shade stress affects lignin biosynthesis in soybean stem, two varieties, Nandou 12 (shade tolerant) and Nan 032-4 (shade susceptible) grew under normal light and shade conditions (the photosynthetically active radiation and the ratio of red:far-red were lower than normal light condition). Lignin accumulation, transcripts of genes involved in lignin biosynthesis, and intermediates content of lignin biosynthesis were analyzed. Both soybean varieties suffered shade stress had increased plant heights and internode lengths, and reduced stem diameters and lignin accumulation in stems. The expression levels of lignin-related genes were significantly influenced by shade stress, with interactions between the light environment and variety. The gene of 3-hydroxylase (
C3H
), cinnamoyl-CoA reductase (
CCR
), caffeoyl-CoA O-methyltransferase (
CCoAOMT
), and peroxidase (
POD
) attributed to lignin biosynthesis under shade stress, and the down-regulation of these genes resulted in lower caffeic, sinapic, and ferulic acid levels, which caused a further decrease in lignin biosynthesis. Under shade stress, the shade tolerant soybean variety (Nandou 12) showed stiffer stems, higher lignin content, and greater gene expression level and higher metabolite contents than shade susceptible one. So these characteristics could be used for screening the shade-tolerant soybean for intercropping.
Reference
|
Related Articles
|
Metrics
Select
Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability
DU Jun-bo, HAN Tian-fu, GAI Jun-yi, YONG Tai-wen, SUN Xin, WANG Xiao-chun, YANG Feng, LIU Jiang, SHU Kai, LIU Wei-guo, YANG Wen-yu
2018, 17 (
04
): 747-754. DOI:
10.1016/S2095-3119(17)61789-1
Abstract
(
1054
)
PDF in ScienceDirect
Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogical field lay-out of crops, low economic value, and labor deficiency, which cannot balance the crop production and agricultural sustainability. In view of this, we developed a novel soybean strip intercropping model using maize as the partner, the regular maize-soybean strip intercropping mainly popularized in northern China and maize-soybean relay-strip intercropping principally extended in southwestern China. Compared to the traditional maize-soybean intercropping systems, the main innovation of field lay-out style in our present intercropping systems is that the distance of two adjacent maize rows are shrunk as a narrow strip, and a strip called wide strip between two adjacent narrow strips is expanded reserving for the growth of two or three rows of soybean plants. The distance between outer rows of maize and soybean strips are expanded enough for light use efficiency improvement and tractors working in the soybean strips. Importantly, optimal cultivar screening and increase of plant density achieved a high yield of both the two crops in the intercropping systems and increased land equivalent ratio as high as 2.2. Annually alternative rotation of the adjacent maize- and soybean-strips increased the grain yield of next seasonal maize, improved the absorption of nitrogen, phosphorus, and potasium of maize, while prevented the continuous cropping obstacles. Extra soybean production was obtained without affecting maize yield in our strip intercropping systems, which balanced the high crop production and agricultural sustainability.
Reference
|
Related Articles
|
Metrics
Select
Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems
WU Yu-shan, YANG Feng, GONG Wan-zhuo, Shoaib Ahmed, FAN Yuan-fang, WU Xiao-ling, YONG Tai-wen, LIU Wei-guo, SHU Kai, LIU Jiang, DU Jun-bo, YANG Wen-yu
2017, 16 (
06
): 1331-1340. DOI:
10.1016/S2095-3119(16)61525-3
Abstract
(
917
)
PDF in ScienceDirect
Soybean is one of the major oil seed crops, which is usually intercropped with other crops to increase soybean production area and yield. However, soybean is highly sensitive to shading. It is unclear if soybean morphology responds to shading (i.e., shade tolerance or avoidance) and which features may be suitable as screening materials in relay strip intercropping. Therefore, in this study, various agronomic characteristics of different soybean genotypes were analyzed under relay intercropping conditions. The soybean materials used in this study exhibited genetic diversity, and the coefficient of variations of the agronomic parameters ranged from 13.84 to 72.08% during the shade period and from 6.44 to 52.49% during the maturity period. The ratios of shading to full irradiance in stem mass fraction (SMF) were almost greater than 1, whereas opposite results were found in the leaves. Compared with full irradiance, the average stem length (SL), leaf area ratio (LAR) and specific leaf area (SLA) for the two years (2013 and 2014) increased by 0.78, 0.47 and 0.65 under shady conditions, respectively. However, the stem diameter (SD), total biomass (TB), leaf area (LA), number of nodes (NN) on the main stem, and number of branches (BN) all decreased. During the shady period, the SL and SMF exhibited a significant negative correlation with yield, and the SD exhibited a significant positive correlation with yield. The correlation between the soybean yield and agronomic parameters during the mature period, except for SL, the first pod height (FPH), 100-seed weight (100-SW), and reproductive growth period (RGP), were significant (
P
<0.01), especially for seed weight per branch (SWB), pods per plant (PP), BN, and vegetative growth period (VGP). These results provide an insight into screening the shade tolerance of soybean varieties and can be useful in targeted breeding programs of relay intercropped soybeans.
Reference
|
Related Articles
|
Metrics