Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Maizelegume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability
ZHENG Ben-chuan, ZHOU Ying, CHEN Ping, ZHANG Xiao-na, DU Qing, YANG Huan, WANG Xiao-chun, YANG Feng, XIAO Te, LI Long, YANG Wen-yu, YONG Tai-wen
2022, 21 (6): 1755-1771.   DOI: 10.1016/S2095-3119(21)63730-9
Abstract188)      PDF in ScienceDirect      
Legume cultivars affect N uptake, component crop growth, and soil physical and chemical characteristics in maize–legume intercropping systems.  However, how belowground interactions mediate root growth, N fixation, and nodulation of different legumes to affect N uptake is still unclear.  Hence, a two-year experiment was conducted with five planting patterns, i.e., maize–soybean strip intercropping (IMS), maize–peanut strip intercropping (IMP), and corresponding monocultures (monoculture maize (MM), monoculture soybean (MS), and monoculture peanut (MP)), and two N application rates, i.e., no N fertilizer (N–) and conventional N fertilizer (N+), to examine relationships between N uptake and root distribution of crops, legume nodulation and soil N availability.  Results showed that the averaged N uptake per unit area of intercrops was significantly lower than the corresponding monocultures.  Compared with the monoculture system, the N uptake of the intercropping systems increased by 31.7–45.4% in IMS and by 7.4–12.2% in IMP, respectively.  The N uptake per plant of intercropped maize and soybean significantly increased by 61.6 and 31.8%, and that of intercropped peanuts significantly decreased by 46.6% compared with the corresponding monocultures.  Maize and soybean showed asymmetrical distribution of roots in strip intercropping systems.  The root length density (RLD) and root surface area density (RSAD) of intercropped maize and soybean were significantly greater than that of the corresponding monocultures.  The roots of intercropped peanuts were confined, which resulted in decreased RLD and RSAD compared with the monoculture.  The nodule number and nodule fresh weight of soybean were significantly greater in IMS than in MS, and those of peanut were significantly lower in IMP than in MP.  The soil protease, urease, and nitrate reductase activities of maize and soybean were significantly greater in IMS and IMP than in the corresponding monoculture, while the enzyme activities of peanut were significantly lower in IMP than in MP.  The soil available N of maize and soybean was significantly greater increased in IMS and IMP than in the corresponding monocultures, while that of IMP was significantly lower than in MP.  In summary, the IMS system was more beneficial to N uptake than the IMP system.  The intercropping of maize and legumes can promote the N uptake of maize, thus reducing the need for N application and improving agricultural sustainability.

Reference | Related Articles | Metrics
N, P and K use efficiency and maize yield responses to fertilization modes and densities
LI Guang-hao, CHENG Qian, LI Long, LU Da-lei, LU Wei-ping
2021, 20 (1): 78-86.   DOI: 10.1016/S2095-3119(20)63214-2
Abstract176)      PDF in ScienceDirect      
Optimal planting density and proper fertilization method are important factors to improve maize yield and nutrient utilization.  A two-year (2016 and 2017) field experiment was conducted with three plant densities (6.0, 7.5 and 9.0 plants m−2) and three fertilization modes (no fertilizer, 0F; one-off application of slow-released fertilizer, SF; twice application of conventional fertilizer, CF).  Results indicated that the grain yields and N, P and K use efficiencies under SF with the optimal planting density (7.5 plants m−2) were the highest among all the treatments in 2016 and 2017.  Compared with CF, SF could increase post-silking dry matter accumulation and promote N, P and K uptake at pre- and post-silking stages; this treatment increased grain N, P and K concentrations and resulted in high N, P and K use efficiencies.  Nutrient (N, P and K) absorption efficiencies and partial productivity, and nutrient (N and P) recovery efficiency in SF treatment were significantly higher than those in CF treatments under the planting density of 7.5 plants m−2.  Under both SF and CF conditions, the grain yield, total N accumulation and nutrient use efficiencies initially increased, peaked at planting density of 7.5 plants m−2, and then decreased with increasing plant density.  Based on the yield and nutrient use efficiency in two years, plant density of 7.5 plants m−2 with SF can improve both the grain yield and N, P and K use efficiency of spring maize in Jiangsu Province, China.
 
Reference | Related Articles | Metrics
dCAPS markers developed for nitrate transporter genes TaNRT2L12s associating with 1 000-grain weight in wheat
HUANG Jun-fang, LI Long, MAO Xin-guo, WANG Jing-yi, LIU Hui-min, LI Chao-nan, JING Rui-lian
2020, 19 (6): 1543-1553.   DOI: 10.1016/S2095-3119(19)62683-3
Abstract119)      PDF in ScienceDirect      
Nitrate transporters (NRTs) are regulators of nitrate assimilation and transport.  The genome sequences of TaNRT2L12-A, -B and -D were cloned from wheat (Triticum aestivum L.), and polymorphisms were analyzed by sequencing.  TaNRT2L12-D in a germplasm population was highly conserved.  However, 38 single nucleotide polymorphisms (SNPs) in TaNRT2L12-A coding region and 11 SNPs in TaNRT2L12-B coding region were detected.  Two derived cleaved amplified polymorphic sequences (dCAPS) markers A-CSNP1 and A-CSNP2 were developed for TaNRT2L12-A based on SNP-351 and SNP-729, and three haplotypes were identified in the germplasm population.  B-CSNP1 and B-CSNP2 were developed for TaNRT2L12-B based on SNP-237 and SNP-1 227, and three haplotypes were detected in the germplasm population.  Association analyses between the markers and agronomic traits in 30 environments and phenotypic comparisons revealed that A-CSNP2-A is a superior allele of shorter plant height (PH), length of penultimate internode (LPI) and peduncle length (PL), B-CSNP2-G is a superior allele of higher grain number per spike (GNS).  Hap-6B-1 containing both superior alleles B-CSNP1-C and B-CSNP2-A is a superior haplotype of 1 000-grain weight (TGW).  Expression analysis showed that TaNRT2L12-B is mainly expressed in the root base and regulated by nitrate.  Therefore, TaNRT2L12 may be involved in nitrate transport and signaling to regulate TGW in wheat.  The superior alleles and dCAPS markers of TaNRT2L12-A/B are beneficial to genetic improvement and germplasm enhancement with molecular markers-assisted selection. 
 
Reference | Related Articles | Metrics
Improved drought tolerance by α-naphthaleneacetic acid-induced ROS accumulation in two soybean cultivars
XING Xing-hua, FANG Chuan-wen, LI Long, JIANG Hong-qiang, ZHOU Qin, JIANG Hai-dong, WANG Shao-hua
2016, 15 (8): 1770-1784.   DOI: 10.1016/S2095-3119(15)61273-4
Abstract1757)      PDF in ScienceDirect      
   Drought is a major abiotic factor limiting agricultural crop production. The objective of this study was to investigate whether α-naphthaleneacetic acid (NAA) confers drought tolerance to soybeans and if such tolerance is correlated with the early reactive oxygen species (ROS) accumulation in leaves. The plants of soybean (Glycine max [L.] Merr.) cv. Nannong 99-6 and cv. Kefeng 1 were foliar treated with 40 mg L−1 NAA at the beginning of bloom and then exposed to water stress for 10 d. We monitored changes in ROS levels, lipid peroxidation and antioxidant system as well as plant biomass during the drought treatment. The results showed that drought stress significantly depressed the growth and yield regardless of spraying NAA. However, drought-stressed plants treated with NAA showed much higher plant biomass and yield than those without NAA. The ROS levels increased in stressed Kefeng 1 but not in stressed Nannong 99-6 2–4 days after the treatment (DAT). During 6–10 DAT, stressed Kefeng 1 had greater increase in the levels of superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), γ-glutamylcysteine synthetase (γ-GCS), reduced ascorbate (AsA), and glutathione (GSH), smaller increase in ROS and malondialdehyde (MDA) as compared with stressed Nannong 99-6. Low ROS prevented ROS from directly reacting with membrane lipid during this stage and, consequently, reduced the cell damage. NAA application elevated ROS levels at 4 DAT, and then increased antioxidant capacity and blocked the increase in the MDA and ROS in stressed Nannong 99-6 and Kefeng 1. Overall, the results indicate that NAA application effectively alleviates the adverse effects of drought stress, which is partially attributable to increase in antioxidant ability and decrease in lipid peroxidation induced by the early ROS accumulation triggered by NAA.
Reference | Related Articles | Metrics