Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
The PcHY5 methylation is associated with anthocyanin biosynthesis and transport in ‘Max Red Bartlett’ and ‘Bartlett’ pears
WEI Wei-lin, JIANG Fu-dong, LIU Hai-nan, SUN Man-yi, LI Qing-yu, CHANG Wen-jing, LI Yuan-jun, LI Jia-ming, WU Jun
2023, 22 (11): 3256-3268.   DOI: 10.1016/j.jia.2023.07.017
Abstract204)      PDF in ScienceDirect      

The red coloring of pear fruits is mainly caused by anthocyanin accumulation.  Red sport, represented by the green pear cultivar ‘Bartlett’ (BL) and the red-skinned derivative ‘Max Red Bartlett’ (MRB), is an ideal material for studying the molecular mechanism of anthocyanin accumulation in pear.  Genetic analysis has previously revealed a quantitative trait locus (QTL) associated with red skin color in MRB.  However, the key gene in the QTL and the associated regulatory mechanism remain unknown.  In the present study, transcriptomic and methylomic analyses were performed using pear skin for comparisons between BL and MRB.  These analyses revealed differential PcHY5 DNA methylation levels between the two cultivars; MRB had lower PcHY5 methylation than BL during fruit development, and PcHY5 was more highly expressed in MRB than in BL.  These results indicated that PcHY5 is involved in the variations in skin color between BL and MRB.  We further used dual luciferase assays to verify that PcHY5 activates the promoters of the anthocyanin biosynthesis and transport genes PcUFGT, PcGST, PcMYB10 and PcMYB114, confirming that PcHY5 not only regulates anthocyanin biosynthesis but also anthocyanin transport.  Furthermore, we analyzed a key differentially methylated site between MRB and BL, and found that it was located in an intronic region of PcHY5.  The lower methylation levels in this PcHY5 intron in MRB were associated with red fruit color during development, whereas the higher methylation levels at the same site in BL were associated with green fruit color.  Based on the differential expression and methylation patterns in PcHY5 and gene functional verification, we hypothesize that PcHY5, which is regulated by methylation levels, affects anthocyanin biosynthesis and transport to cause the variations in skin color between BL and MRB.

Reference | Related Articles | Metrics
Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears
SHAN Yan-fei, LI Meng-yan, WANG Run-ze, LI Xiao-gang, LIN Jing, LI Jia-ming, ZHAO Ke-jiao, WU Jun
2023, 22 (1): 120-138.   DOI: 10.1016/j.jia.2022.08.040
Abstract303)      PDF in ScienceDirect      

Early defoliation, which usually occurs during summer in pear trees, is gradually becoming a major problem that poses a serious threat to the pear industry in southern China.  However, there is no system for evaluating the responses of different cultivars to early defoliation, and our knowledge of the potential molecular regulation of the genes underlying this phenomenon is still limited.  In this study, we conducted field investigations of 155 pear accessions to assess their resistance or susceptibility to early defoliation.  A total of 126 accessions were found to be susceptible to early defoliation, and only 29 accessions were resistant.  Among them, 19 resistant accessions belong to the sand pear species (Pyrus pyrifolia).  To identify the resistance genes related to early defoliation, the healthy and diseased samples of two sand pear accessions, namely, the resistant early defoliation accession ‘Whasan’ and the susceptible early defoliation accession ‘Cuiguan’, were used to perform RNA sequencing.  Compared with ‘Cuiguan’, a total of 444 genes were uniquely differentially expressed in ‘Whasan’.  Combined with GO and KEGG enrichment analyses, we found that early defoliation was closely related to the stress response.  Furthermore, a weighted gene co-expression network analysis revealed a high correlation of WRKY and ethylene responsive factor (ERF) transcription factors with early defoliation resistance.  This study provides useful resistant germplasm resources and new insights into potentially essential genes that respond to early defoliation in pears, which may facilitate a better understanding of the resistance mechanism and molecular breeding of resistant pear cultivars

Reference | Related Articles | Metrics
Comparative transcriptome analysis provides insights into the mechanism of pear dwarfing
TANG Zi-kai, SUN Man-yi, LI Jia-ming, SONG Bo-bo, LIU Yue-yuan, TIAN Yi-ke, WANG Cai-hong, WU Jun
2022, 21 (7): 1952-1967.   DOI: 10.1016/S2095-3119(21)63774-7
Abstract279)      PDF in ScienceDirect      
Dwarfism is an important trait which is closely related to the efficiency of fruit orchard management and production.  However, dwarfing cannot be widely applied in the cultivation of pears, especially Asian pears.  Developing varieties with dwarf characteristics is a goal of paramount importance in pear breeding.  In the present study, dwarf phenotype pears (DPPs) and arborescent phenotype pears (APPs) were obtained from the offspring of a cross between ‘Aiyuxiang’ and ‘Cuiguan’ pear cultivars, which exhibited dwarfed and arborescent statures, respectively.  When compared with APPs, the heights of DPPs showed a 62.8% reduction, and the internode lengths were significantly shorter.  Cross-grafting between DPPs and APPs demonstrated that the dwarfed phenotype of DPPs was primarily induced by the aerial portions of the plant, and independent of the root system.  Observations of stem tissue sections showed that DPP cells were arranged chaotically with irregular shapes, and the average length was larger than that of the APP cells.  A total of 1 401 differently expressed genes (DEGs) in shoot apices between DPPs and APPs were identified by RNA-sequencing (RNA-Seq), and these DEGs were mainly enriched in the ‘phytohormone-related pathways, cell wall metabolism and cell division’ categories.  Moreover, 101 DEGs were identified as transcription factors (TFs).  In DPPs, several brassinosteroids (BR) signaling and cell cycle-related genes were significantly down-regulated, while genes involved in BR and GA degradation were up-regulated.  Comprehensive analysis of RNA-Seq data and stem tissue sections suggested that the dwarfed phenotype of DPPs could be primarily attributed to deficiencies in cell division.  Previous work using simple sequence repeat (SSR) markers narrowed the location of the gene responsible for the dwarf phenotype of ‘Le Nain Vert’.  Through combined analysis of our transcriptomic data with the SSR results, we identified four genes as promising candidates for the dwarf phenotype, among which, a DELLA gene could be the most promising.  The results presented in this study provide a sound foundation for further exploration into the genetic and molecular mechanisms underlying pear dwarfing.
Reference | Related Articles | Metrics
Identification and expression analysis of the PbrMLO gene family in pear, and functional verification of PbrMLO23
GUO Bing-bing, LI Jia-ming, LIU Xing, QIAO Xin, Musana Rwalinda FABRICE, WANG Peng, ZHANG Shao-ling, WU Ju-you
2021, 20 (9): 2410-2423.   DOI: 10.1016/S2095-3119(20)63558-4
Abstract152)      PDF in ScienceDirect      
Mildew resistance locus O (MLO) is a plant-specific gene family that plays an important role in the growth and development of plants and their interactions with the environment.  However, the available information on this gene family in pear is limited.  Here, 24 PbrMLO genes were identified and divided into five subfamilies (I, II, III, IV and V).  Whole-genome duplication (WGD) and dispersed duplication contributed to the expansion of the PbrMLO family.  In addition, gene expression analysis revealed that PbrMLO genes were distributed in various pear tissues, suggesting their diverse functions.  We selected PbrMLO23 for further functional analysis.  Expression profile analysis by qRT-PCR showed that PbrMLO23 was highly expressed in pollen.  Subcellular localization analysis showed that PbrMLO23 was located on the plasma membrane.  When the expression level of PbrMLO23 was knocked down by using antisense oligonucleotides, pollen tube lengths increased, indicating that PbrMLO23 plays a functional role in inhibiting pollen tube growth.  In summary, these results provide evolutionary insight into PbrMLO and its functional characteristics and lay a foundation for further analysis of the functions of PbrMLO members in pear.
 
Reference | Related Articles | Metrics
Pearprocess: A new phenotypic tool  for stone cell trait evaluation in pear fruit
XUE Yong-song, XU Shao-zhuo, XUE Cheng, WANG Run-ze, ZHANG Ming-yue, LI Jia-ming, ZHANG Shao-ling, WU Jun
2020, 19 (6): 1625-1634.   DOI: 10.1016/S2095-3119(20)63193-8
Abstract111)      PDF in ScienceDirect      
The content of stone cells is an important factor for pear breeding as a high content indicates severely reduced fruit quality in terms of fruit taste.  Although the frozen-HCl method is currently a common method used to evaluate stone cell content in pears, it is limited in incomplete separation of stone cell and pulp and is time consuming and complicated.  Computer-aided research is a promising strategy in modern scientific research for phenotypic data collection and is increasingly used in studying crops.  Thus far, we lack a quantitative tool that can effectively determine stone cell content in pear fruit.  We developed a program, Pearprocess, based on an imaging protocol using computer vision and image processing algorithms applied to digital images.  Using photos of hand-cut sections of pear fruit stained with phloroglucin-HCl (Wiesner’s reagent), Pearprocess can extract and analyze image-based data to quantify the stone cell-related traits measured in this study: number, size, area and density of stone cell.  We quantified these traits for 395 pear accessions by Pearprocess and revealed large variation in different pear varieties and species.  The number of stone cells varied greatly from value of 138 to 2 866, the density of stone cells ranged from 0.0019 to 0.0632 cm2 cm–2, the distribution of stone cell area ranged from 0.06 to 2.02 cm2, and the stone cell size was between 2e-4 and 1e-3 cm2.  Moreover, trait data were correlated with fruit taste data.  We found that stone cell density is likely the most important factor affecting the taste of pear fruit.  In summary, Pearprocess is a new cost-effective web-application for semi-automated quantification of two-dimensional phenotypic traits from digital imagery using an easy imaging protocol.  This simpler, feasible and accurate method to evaluate stone cell traits of fruit is a promising new tool for use in evaluating future germplasms for crop breeding programs.
 
Reference | Related Articles | Metrics