Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Diagnosis of leg diseases in broiler chickens: A retrospective review
Bowen Xu, Tingting Xu, Wenli Ding, Shucheng Huang
2025, 24 (3): 984-1000.   DOI: 10.1016/j.jia.2023.12.034
Abstract70)      PDF in ScienceDirect      

In the process of feeding, broilers are susceptible to leg diseases, which are often caused by factors such as genetics, bacteria, viruses, the growth environment, and diet management.  Treating leg disorders/diseases in broilers is challenging, and once they suffer from such conditions, it generally leads to reduced production performance and affects the quality of meat.  It is worth mentioning that with the advancement of intensive management technologies and the accelerated growth rate of broilers, the leg diseases in broilers has increased, resulting in higher culling rates during production.  Leg diseases not only cause significant economic losses to the poultry industry, but also severely jeopardize the animal welfare of broilers.  Therefore, effective early diagnosis is crucial to mitigate the adverse effects of chicken leg diseases.  This study aims to review various diagnostic methods, including clinical diagnosis, autopsy, radiological diagnosis, infrared thermal imagery, biomarkers and emerging diagnostic techniques, to establish a theoretical foundation for the identification or monitoring of leg diseases in poultry industry.


Reference | Related Articles | Metrics
Identification and characterization of FpRco1 in regulating vegetative growth and pathogenicity based on T-DNA insertion in Fusarium pseudograminearum
Haiyang Li, Yuan Zhang, Cancan Qin, Zhifang Wang, Lingjun Hao, Panpan Zhang, Yongqiang Yuan, Chaopu Ding, Mengxuan Wang, Feifei Zan, Jiaxing Meng, Xunyu Zhuang, Zheran Liu, Limin Wang, Haifeng Zhou, Linlin Chen, Min Wang, Xiaoping Xing, Hongxia Yuan, Honglian Li, Shengli Ding
2024, 23 (9): 3055-3065.   DOI: 10.1016/j.jia.2024.01.001
Abstract161)      PDF in ScienceDirect      
Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot (FCR) in wheat and poses a significant threat to wheat production in terms of grain yield and quality.  However, the mechanism by which Fpseudograminearum infects wheat remains unclear.  In this study, we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of Fpseudograminearum.  By screening this mutant library, we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.  Among these mutants, one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1, encoding essential component of the Rpd3S histone deacetylase complex in F. pseudograminearum.  To further investigate the role of FpRCO1 in Fpseudograminearum, we employed a split-marker approach to knock out FpRCO1 in Fpseudograminearum WZ-8A.  FpRCO1 deletion mutants exhibit reduced vegetative growth, conidium production, and virulence in wheat coleoptiles and barley leaves, whereas the complementary strain restores these phenotypes.  Moreover, under stress conditions, the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl, sorbitol, and SDS, but possessed reduced sensitivity to H2O2 compared to these characteristics in the wild-type strain.  RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression (particularly the downregulation of TRI gene expression), thus resulting in significantly reduced deoxynivalenol (DON) production.  In summary, our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development, asexual reproduction, DON production, and pathogenicity of Fpseudograminearum.  This study provides valuable insights into the molecular mechanisms underlying Fpseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease.


Reference | Related Articles | Metrics

Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates

Shanshan Cai, Lei Sun, Wei Wang, Yan Li, Jianli Ding, Liang Jin, Yumei Li , Jiuming Zhang, Jingkuan Wang, Dan Wei
2024, 23 (5): 1703-1717.   DOI: 10.1016/j.jia.2023.10.001
Abstract126)      PDF in ScienceDirect      

Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.  However, the effects of straw mulching on dissolved organic matter (DOM) runoff loss from black soil are not well studied.  How straw mulching affects the composition and loss of runoff DOM by changing soil aggregates remains largely unclear.  Here, a straw mulching treatment was compared to a no mulching treatment (as a control) on sloping farmland with black soil erosion in Northeast China.  We divided the soil into large macroaggregates (>2 mm), small macroaggregates (0.25–2 mm), and microaggregates (<0.25 mm).  After five rain events, the effects of straw mulching on the concentration (characterized by dissolved organic carbon (DOC)) and composition (analyzed by fluorescence spectroscopy) of runoff and soil aggregate DOM were studied.  The results showed that straw mulching reduced the runoff amount by 54.7%.  Therefore, although straw mulching increased the average DOC concentration in runoff, it reduced the total runoff DOM loss by 48.3%.  The composition of runoff DOM is similar to that of soil, as both contain humic-like acid and protein-like components.  With straw mulching treatment, the protein-like components in small macroaggregates accumulated and the protein-like components in runoff declined with rain events.  Fluorescence spectroscopy technology may help in understanding the hydrological paths of rain events by capturing the dynamic changes of runoff and soil DOM characteristics.  A variation partitioning analysis (VPA) indicated that the DOM concentration and composition of microaggregates explained 68.2% of the change in runoff DOM from no mulching plots, while the change in runoff DOM from straw mulching plots was dominated by small macroaggregates at a rate of 55.1%.  Taken together, our results demonstrated that straw mulching reduces the fragmentation of small macroaggregates and the loss of microaggregates, thus effecting DOM compositions in soil and reducing the DOM loss in runoff.  These results provide a theoretical basis for reducing carbon loss in sloping farmland.

Reference | Related Articles | Metrics
Phenotype and mechanism analysis of plant dwarfing in pear regulated by abscisic acid
LIU Jian-long, ZHANG Chen-xiao, LI Tong-tong, LIANG Cheng-lin, YANG Ying-jie, LI Ding-Li, CUI Zhen-hua, WANG Ran, SONG Jian-kun
2022, 21 (5): 1346-1356.   DOI: 10.1016/S2095-3119(21)63786-3
Abstract167)      PDF in ScienceDirect      
Close planting of dwarf varieties is currently the main cultivation direction for pear trees, and the screening of excellent dwarf varieties is an important goal for breeders.  In this study, the dwarfing pear variety ‘601D’ and its vigorous mutant ‘601T’ were used to show their biological characteristics and further explore the dwarfing mechanism in ‘601D’.  The biological characteristics showed that ‘601D’ had a shorter internode length, a shorter and more compact tree body, thicker and broader leaves, lower stomata density, larger stomata size (dimension), and higher photosynthetic capacity.  The biological characteristics of ‘601T’ showed notable contrasts.  The results of endogenous hormone tests indicated that the contents of abscisic acid (ABA), ABA-glucosyl ester, and GA4 were higher in ‘601D’, but the trans-zeatin content was lower.  By transcriptomic analysis, significant differences were found in the biosynthetic and metabolic pathways of ABA.  Related transcription factors such as bHLH, WRKY, and homeobox also participated in the regulation of plant dwarfing.  We therefore examined three hormones with obvious differences with ‘601T’, and found that only ABA could induce ‘601T’ to return to a dwarfing plant phenotype.  Therefore, we conclude that the dwarfing of ‘601D’ is caused by an excessive accumulation of ABA.  This study provides a new theoretical basis for breeding dwarf varieties.
Reference | Related Articles | Metrics
Heat stability of winter wheat depends on cultivars, timing and protective methods
LI Qiang, CHANG Xu-hong, MENG Xiang-hai, LI Ding, ZHAO Ming-hui, SUN Shu-luan, LI Hui-min, QIAO Wen-chen
2020, 19 (8): 1984-1997.   DOI: 10.1016/S2095-3119(19)62760-7
Abstract146)      PDF in ScienceDirect      
Heat stress negatively affects wheat production in many regions of the world.  At present, sensitivity to heat stress remains one of the least understood aspects of wheat genetics and breeding, and measures for preventing heat stress are understudied. In this study, we used three cultivars of winter wheat (GY2018, SL02-1 and SY20) to evaluate the effect of heat stress at different days after anthesis (DAA) on yield and quality.  Heat stability of the cultivars were analyzed and evaluated for the effects of two kinds of regulators on wheat under heat stress conditions.  Heat treatment at 7 DAA led to the most substantial reduction in yield while GY2018 had the best heat stability with respect to yield, and demonstrated the most positive effects on several quality traits including protein content, sedimentation volume and glutenin and gliadin contents.  Heat treatment at 14 DAA had the least reduction in yield, while SY20 had the best heat stability with respect to yield and heat treatment had minimal effects on quality.  Heat treatment at 21 DAA had only a limited effect on yield, while SL02-1 had the best heat stability with respect to yield, but it showed the most negative effects on quality.  Stable time at 14 DAA and protein content at 21 DAA can be used as indicators for detecting the stability of quality under heat stress.  Among the three studied cultivars, SY20 was the most sensitive to heat stress with the stable time decreasing from 26.4 to 9.1 min, a higher sedimentation volume at 7 DAA, and a lower γ-gliadin content which increased 2.4-fold under high-temperature treatment.  The addition of various regulators had different effects: potassium dihydrogen phosphate (KDP) was more protective of yield with heat stress at 7 DAA, while Duntianbao (DTB) had better effects on quality with heat stress at 21 DAA.
 
Reference | Related Articles | Metrics
Evaluation of a new method for quantification of heat tolerance in different wheat cultivars
LI Qiang, WANG Zheng-rui, LI Ding, WEI Jian-wei, QIAO Wen-chen, MENG Xiang-hai, SUN Shu-luan, LI Hui-min, ZHAO Ming-hui, CHEN Xiu-min, ZHAO Feng-wu
2018, 17 (04): 786-795.   DOI: 10.1016/S2095-3119(17)61716-7
Abstract643)      PDF in ScienceDirect      
Heat stress seriously affects wheat production in many regions of the world.  At present, heat tolerance research remains one of the least understood fields in wheat genetics and breeding and there is a lack of effective methods to quantify heat stress and heat tolerance in different wheat cultivars.  The objective of this study was to use various wheat cultivars to evaluate stress intensity (δ) and a new method for quantification of heat tolerance and compare this technique with three other currently utilized methods.  This new parameter for heat tolerance quantification is referred to as the heat tolerance index (HTI) and is an indicator of both yield potential and yield stability.  Heat treatments were applied in a controlled setting when anthesis had been reached for 80% of the wheat.  The stress intensity evaluation indicated heat shock was the main factor associated with kernel weight reduction while grain yield reduction was mainly associated with chronic high temperature.  The methods evaluation showed that a temperature difference of 5°C from natural temperatures was a suitable heat treatment to compare to the untreated controls.  HTI was positively correlated with yield under heat stress (r=0.8657, δ2010=0.15, in 2009–2010; r=0.8418, δ2011=0.20, in 2010–2011; P<0.01), and negatively correlated with yield reduction rate (r=–0.8344, in 2009–2010; r=–0.7158, in 2010–2011; P<0.01).  The results of this study validated the use of HTI and temperature difference control for quantifying wheat heat tolerance that included the yield potential and the stability of different wheat cultivars under heat stress.  Additionally, 10 wheat cultivars showed high HTI and should be further tested for their heat confirming characteristics for use in wheat heat tolerance breeding.
Reference | Related Articles | Metrics
Production of Transgenic Anliucheng Sweet Orange (Citrus sinensis Osbeck) with Xa21 Gene for Potential Canker Resistance
LI Ding-li, XIAO Xuan, GUO Wen-wu
2014, 13 (11): 2370-2377.   DOI: 10.1016/S2095-3119(13)60675-9
Abstract1182)      PDF in ScienceDirect      
Citrus canker, an epidemic quarantine disease caused by Xanthomonas axonopodis pv. citri, has brought a great damage in citrus production worldwide. Herein, a rice PRR (pattern recognition receptor) gene Xa21 together with GUS reporter gene and hygromycin phosphotransferase gene (HPT) was introduced into Anliucheng sweet orange (Citrus sinensis Osbeck) via Agrobacterium-mediated transformation of embryogenic callus. The transgenic calluses were screened on MT basal medium containing hygromycin (HYG) and detected by histochemical GUS staining. The transgenic plantlets were recovered through somatic embryogenesis pathway. The regenerated plantlets were accustomed to and maintained in the greenhouse. The transgene integration of recovered plantlets was identified by PCR and Southern blot hybridization. It showed that all the transgenic plantlets tested had undergone single copy integration, the expression of Xa21 in eight different transgenic lines detected by qRT-PCR can be divided into three grades, high for T5 and T6, middle for T4 and low for the rest. The tolerance to citrus canker disease of the three recovered transgenic lines T2, T4 and T6 was assessed by in vitro pin-puncture inoculation. The results showed that all the three transgenic lines conferred improved resistance to citrus canker bacterium infection and the T4 transgenic line displayed the highest resistance. The mechanism and feasibility of rice Xa21 in triggering innate immunity in citrus was briefly discussed.
Reference | Related Articles | Metrics
QTL Mapping for Stalk Related Traits in Maize (Zea mays L.) Under Different Densities
ZHU Li-ying, CHEN Jing-tang, Li Ding, ZHANG Jian-hua, HUANG Ya-qun, ZHAO Yong-feng, SONG Zhan-quan , LIU Zhi-zeng
2013, 12 (2): 218-228.   DOI: 10.1016/S2095-3119(13)60221-X
Abstract1522)      PDF in ScienceDirect      
Stalk related traits, comprising plant height (PH), ear height (EH), internode number (IN), average internode length (AIL), stalk diameter (SD), and ear height coefficient (EHC), are significantly correlated with yield, density tolerance, and lodging resistance in maize. To investigate the genetic basis for stalk related traits, a doubled haploid (DH) population derived from a cross between NX531 and NX110 were evauluated under two densities over 2 yr. The additive quantitative trait loci (QTLs), epistatic QTLs were detected using inclusive composite interval mapping and QTL-by-environment interaction were detected using mixed linear model. Differences between the two densities were significant for the six traits in the DH population. A linkage map that covered 1 721.19 cM with an average interval of 10.50 cM was constructed with 164 simple sequence repeat (SSR). Two, two, seven, six, two, and eight additive QTLs for PH, IN, AIL, EH, SD, and EHC, respectively. The extend of their contribution to penotypic variation ranged from 10.10 to 31.93%. Seven QTLs were indentified simultaneously under both densities. One pair, two pairs and one pair of epistatic effects were detected for AIL, SD and EHC, respectively. No epistatic effects were detected for PH, EH, and IN. Nineteen QTLs with environment interactions were detected and their contribution to phenotypic variation ranged from 0.43 to 1.89%. Some QTLs were stably detected under different environments or genetic backgrounds comparing with previous studies. These QTLs could be useful for genetic improvement of stalk related traits in maize breeding.
Reference | Related Articles | Metrics