Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Identification and characterization of cell cultures with various embryogenic/regenerative potential in cotton based on morphological, cytochemical, and cytogenetical assessment
GUO Hui-hui, WU Jian-fei, CHEN Cui-xia, WANG Hong-mei, ZHAO Yun-lei, ZHANG Chao-jun, JIA Yin-hua, LIU Fang, NING Tang-yuan, CHU Zhao-hui, ZENG Fan-chang
2019, 18 (1): 1-8.   DOI: 10.1016/S2095-3119(17)61876-8
Abstract340)      PDF (10560KB)(457)      
Somatic embryogenesis (SE) plays a vital role in genetic transformation and massive propagation of important agronomical and economical crops.  Here, we conducted a systematic assessment of the morphological, cytochemical, and cytogenetical characteristics of six culture strains with various embryogenic/regenerative potential during SE process in cotton.  Results indicated that the six cell culture strains had stable ploidy levels, and did not reveal any relationship between the cytogenetic state and their morphogenetic potential.  Moreover, the six culture strains were compared via double staining with Evans blue and Acetocarmine to efficiently distinguish embryogenic and non-embryogenic cells and determine the embryogenic nature of the calli.  In addition, the kind of auxins added in medium affected not only growth property, color, size of cell clumps but also ploidy level and regeneration ability.  By combining analysis of morphological, cytochemical, and cytogenetical characteristics of the cell cultures, we are able to obtain and maintain homogeneous cell population with high morphogenic and regeneration ability and establish efficient somatic embryogenesis and regeneration system from short-term cell cultures in upland cotton, which highlight the application of biotechnological approaches in crop breeding, and above all, to better understand totipotency of cells in higher plants.
Reference | Related Articles | Metrics
Molecular Diversity and Association Analysis of Drought and Salt Tolerance in Gossypium hirsutum L. Germplasm
JIA Yin-hua, SUN Jun-ling, WANG Xi-wen, ZHOU Zhong-li, PAN Zao-e, HE Shou-pu, PANG Bao-yin, WANG Li-ru , DU Xiong-ming
2014, 13 (8): 1845-1853.   DOI: 10.1016/S2095-3119(13)60668-1
Abstract1429)      PDF in ScienceDirect      
Association mapping is a useful tool for the detection of genes selected during plant domestication based on their linkage disequilibrium (LD). This study was carried out to estimate genetic diversity, population structure and the extent of LD to develop an association framework in order to identify genetic variations associated with drought and salt tolerance traits. 106 microsatellite marker primer pairs were used in 323 Gossypium hirsutum germplasms which were grown in the drought shed and salt pond for evaluation. Polymorphism (PIC=0.53) was found, and three groups were detected (K=3) with the second likelihood ΔK using STRUCTURE software. LD decay rates were estimated to be 13-15 cM at r2 0.20. Significant associations between polymorphic markers and drought and salt tolerance traits were observed using the general linear model (GLM) and mixed linear model (MLM) (P 0.01). The results also demonstrated that association mapping within the population structure as well as stratification existing in cotton germplasm resources could complement and enhance quantitative trait loci (QTLs) information for marker-assisted selection.
Reference | Related Articles | Metrics