Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails

MdWRKY40is directly promotes anthocyanin accumulation and blocks MdMYB15L, the repressor of MdCBF2, which improves cold tolerance in apple

XU Peng-yue, XU Li, XU Hai-feng, HE Xiao-wen, HE Ping, CHANG Yuan-sheng, WANG Sen, ZHENG Wen-yan, WANG Chuan-zeng, CHEN Xin, LI Lin-guang, WANG Hai-bo
2023, 22 (6): 1704-1719.   DOI: 10.1016/j.jia.2023.04.033
Abstract292)      PDF in ScienceDirect      

Cold stress is an important factor that limits apple production.  In this study, we examined the tissue-cultured plantlets of apple rootstocks ‘M9T337’ and ‘60-160’, which are resistant and sensitive to cold stress, respectively.  The enriched pathways of differentially expressed genes (DEGs) and physiological changes in ‘M9T337’ and ‘60-160’ plantlets were clearly different after cold stress (1°C) treatment for 48 h, suggesting that they have differential responses to cold stress.  The differential expression of WRKY transcription factors in the two plantlets showed that MdWRKY40is and MdWRKY48 are potential regulators of cold tolerance.  When we overexpressed MdWRKY40is and MdWRKY48 in apple calli, the overexpression of MdWRKY48 had no significant effect on the callus, while MdWRKY40is overexpression promoted anthocyanin accumulation, increased callus cold tolerance, and promoted the expression of anthocyanin structural gene MdDFR and cold-signaling core gene MdCBF2.  Yeast one-hybrid screening and electrophoretic mobility shift assays showed that MdWRKY40is could only bind to the MdDFR promoter.  Yeast two-hybrid screening and bimolecular fluorescence complementation showed that MdWRKY40is interacts with the CBF2 inhibitor MdMYB15L through the leucine zipper (LZ).  When the LZ of MdWRMY40is was knocked out, MdWRKY40is overexpression in the callus did not affect MdCBF2 expression or callus cold tolerance, indicating that MdWRKY40is acts in the cold signaling pathway by interacting with MdMYB15L.  In summary, MdWRKY40is can directly bind to the MdDFR promoter in order to promote anthocyanin accumulation, and it can also interact with MdMYB15L to interfere with its inhibitory effect on MdCBF2, indirectly promoting MdCBF2 expression, and thereby improving cold tolerance.  These results provide a new perspective for the cold-resistance mechanism of apple rootstocks and a molecular basis for the screening of cold-resistant rootstocks.

Reference | Related Articles | Metrics
Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study
BAI Jin-shun, ZHANG Shui-qing, HUANG Shao-min, XU Xin-peng, ZHAO Shi-cheng, QIU Shao-jun, HE Ping, ZHOU Wei
2023, 22 (11): 3517-3534.   DOI: 10.1016/j.jia.2023.09.012
Abstract203)      PDF in ScienceDirect      

To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C (SOC) and total N (TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-Huai-Hai Plain during 1990–2019.  The experimental treatments consisted of five fertilizer regimes: no fertilizer (control), chemical fertilizer only (NPK), chemical fertilizer with straw (NPKS), chemical fertilizer with manure (NPKM), and 1.5 times the rate of NPKM (1.5NPKM).  The NPK, NPKS, and NPKM treatments had equal N inputs.  The crop yields were measured over the whole experimental duration.  Soil samples were collected from the topsoil (0–10 and 10–20 cm) and subsoil (20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements.  Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil (24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers (22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments (NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment.  The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions (19.8 and 27.0%) than the NPK treatment.  However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions (–19.2 and –29.1%) than the control.  The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions (i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively.  The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72 (P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage.  The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers.


Reference | Related Articles | Metrics
The Nutrient Expert decision support system improves nutrient use efficiency and environmental performance of radish in North China
ZHANG Jia-jia, DING Wen-cheng, CUI Rong-zong, LI Ming-yue, Sami ULLAH, HE Ping
2022, 21 (5): 1501-1512.   DOI: 10.1016/S2095-3119(21)63660-2
Abstract143)      PDF in ScienceDirect      
Excessive fertilization has led to nutrient use inefficiency and serious environmental consequences for radish cultivation in North China.  The Nutrient Expert (NE) system is a science-based, site-specific fertilization decision support system, but the updated NE system for radish has rarely been evaluated.  This study aims to validate the feasibility of NE for radish fertilization management from agronomic, economic, and environmental perspectives.  A total of 46 field experiments were conducted over four seasons from April 2018 to November 2019 across the major radish growing regions in North China.  The results indicated that NE significantly reduced N, P2O5, and K2O application rates by 98, 110, and 47 kg ha−1 relative to those in the farmers’ practice (FP), respectively, and reduced N and P2O5 inputs by 48 and 44 kg ha−1, respectively, while maintaining the same K2O rate as soil testing (ST).  Relative to FP and ST, NE significantly increased radish yield by 2.7 and 2.6 t ha−1 (4.2 and 4.0%) and net returns by 837 and 432 USD ha−1, respectively.  On average, NE significantly improved the agronomic efficiency (AE) of N, P, and K (relative to FP and ST) by 42.4 and 31.0, 67.4 kg kg−1 and 50.9, and 20.3 and 12.3 kg kg−1; enhanced the recovery efficiency (RE) of N, P, and K by 11.4 and 7.0, 14.1 and 7.5, and 11.3 and 6.3 percentage points; and increased the partial factor productivity (PFP) of N, P, and K by 162.9 and 96.8, 488.0 and 327.3, and 86.9 and 22.4 kg kg−1, respectively.  Furthermore, NE substantially reduced N and P2O5 surpluses by 105.1 and 115.1 kg ha−1, respectively, and decreased apparent N loss by 110.8 kg ha−1 compared to FP.  These results indicated that the NE system is an effective and feasible approach for improving NUE and promoting cleaner radish production in North China.

Reference | Related Articles | Metrics
Statistical analysis of nitrogen use efficiency in Northeast China using multiple linear regression and random forest
LIU Ying-xia, Gerard B. M. HEUVELINK, Zhanguo BAI, HE Ping, JIANG Rong, HUANG Shao-hui, XU Xin-peng
2022, 21 (12): 3637-3657.   DOI: 10.1016/j.jia.2022.08.054
Abstract341)      PDF in ScienceDirect      

Understanding the spatial-temporal dynamics of crop nitrogen (N) use efficiency (NUE) and the relationship with explanatory environmental variables can support land-use management and policymaking.  Nevertheless, the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.  In this study, stepwise multiple linear regression (SMLR) and Random Forest (RF) were used to evaluate the spatial and temporal variation of NUE indicators (i.e., partial factor productivity of N (PFPN); partial nutrient balance of N (PNBN)) at county scale in Northeast China (Heilongjiang, Liaoning and Jilin provinces) from 1990 to 2015.  Explanatory variables included agricultural management practices, topography, climate, economy, soil and crop types.  Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.  The NUE indicators decreased with time in most counties during the study period.  The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN, and 0.67 and 0.89 for PNBN, respectively.  The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.  The planting area index of vegetables and beans, soil clay content, saturated water content, enhanced vegetation index in November & December, soil bulk density, and annual minimum temperature were the main explanatory variables for both NUE indicators.  This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.  This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development, ensuring food security, alleviating environmental degradation and increasing farmer’s profitability.



Reference | Related Articles | Metrics
Peanut yield, nutrient uptake and nutrient requirements in different regions of China
ZHAO Shi-cheng, LÜ Ji-long, XU Xin-peng, LIN Xiao-mao, Luiz Moro ROSSO, QIU Shao-jun, Ignacio CIAMPITTI, HE Ping
2021, 20 (9): 2502-2511.   DOI: 10.1016/S2095-3119(20)63253-1
Abstract147)      PDF in ScienceDirect      
Nutrient balance is essential for attaining high yield and improving profits in agricultural farming systems, and crop nutrient uptake ratio and stoichiometry can indicate crop nutrient limitations in the field.  We collected a large amount of field data to study the variations in yield, nutrient uptake and nutrient stoichiometry of peanut (Arachis hypogaea L.) in Southeast China (SEC), North-central China (NCC), and Northeast China (NEC), during 1993 to 2018.  Peanut pod yield gradually increased from 1993 to 2018, with average yields of 4 148, 5 138, and 4 635 kg ha–1 in SEC, NCC, and NEC, respectively.  The nitrogen (N) internal efficiency (NIE, yield to N uptake ratio) was similar among the three regions, but phosphorus (P) IE (PIE, yield to P uptake ratio) changed from low to high among regions: NCC<SEC<NEC, while potassium (K) IE (KIE, yield to K uptake ratio) portrayed a different pattern of SEC<NCC<NEC.  Based on the nutrient IE, to produce 1 Mg of pod yield, the average N, P, and K requirements of the above-ground parts of peanut were roughly 47.2, 5.1, and 25.5 kg in SEC, 44.8, 5.7, and 20.6 kg in NCC, and 44.6, 4.4, and 14.7 kg in NEC, respectively.  The N/P ratio changed in the sequence NCC<SEC<NEC, and the N/K ratio was similar in NEC and NCC, but lower in SEC.  The N harvest index (HI) and KHI declined with increasing nutrient uptake across all regions under high nutrient uptake.  The low PIE and N/P ratios in NCC could be explained by the high P accumulation in stover, and high KIE and N/K ratios in NEC may be attributed to the low soil K supply.  The frontier analysis approach provides a practical framework and allows documentation of a decline in nutrient HI as nutrient uptake increases.  Lastly, this study reveals the limitation and surplus of nutrients of peanut in different regions of China.
Reference | Related Articles | Metrics
Characteristics of maize residue decomposition and succession in the bacterial community during decomposition in Northeast China
ZHAO Shi-cheng, Ignacio A. CIAMPITTI, QIU Shao-jun, XU Xin-peng, HE Ping
2021, 20 (12): 3289-3298.   DOI: 10.1016/S2095-3119(20)63570-5
Abstract146)      PDF in ScienceDirect      
Microbes are decomposers of crop residues, and climatic factors and residue composition are known to influence microbial growth and community composition, which in turn regulate residue decomposition.  However, the succession of the bacterial community during residue decomposition in Northeast China is not well understood.  To clarify the property of bacterial community succession and the corresponding factors regulating this succession, bags containing maize residue were buried in soil in Northeast China in October, and then at different intervals over the next 2 years, samples were analyzed for residue mass and bacterial community composition.  After residue burial in the soil, the cumulative residue mass loss rates were 18, 69, and 77% after 5, 12, and 24 months, respectively.  The release of residue nitrogen, phosphorus, and carbon followed a similar pattern as mass loss, but 79% of residue potassium was released after only 1 month.  The abundance, richness, and community diversity of bacteria in the residue increased rapidly and peaked after 9 or 20 months.  Residue decomposition was mainly influenced by temperature and chemical composition in the early stage, and was influenced by chemical composition in the later stage.  Phyla Actinobacteria, Bacteroidetes, and Firmicutes dominated the bacterial community composition in residue in the early stage, and the abundances of phyla Chloroflexi, Acidobacteria, and Saccharibacteria gradually increased in the later stage of decomposition.  In conclusion, maize residue decomposition in soil was greatly influenced by temperature and residue composition in Northeast China, and the bacterial community shifted from dominance of copiotrophic populations in the early stage to an increase in oligotrophic populations in the later stage. 
 
Reference | Related Articles | Metrics
Regional distribution of wheat yield and chemical fertilizer requirements in China
XU Xin-peng, HE Ping, CHUAN Li-min, LIU Xiao-yan, LIU Ying-xia, ZHANG Jia-jia, HUANG Xiao-meng, QIU Shao-jun, ZHAO Shi-cheng, ZHOU Wei
2021, 20 (10): 2772-2780.   DOI: 10.1016/S2095-3119(20)63338-X
Abstract159)      PDF in ScienceDirect      
Quantification of currently attainable yield and fertilizer requirements can provide detailed information for assessing the food supply capacity and offer data support for agricultural decision-making.  Datasets from a total of 5 408 field experiments were collected from 2000 to 2015 across the major wheat production regions in China to analyze the spatial distribution of wheat yield, the soil nutrient supply capacity (represented by relative yield, defined as the ratio of the yield under the omission of one of nitrogen (N), phosphorus (P) and potassium (K) to the yield under the full NPK fertilizer application), and N, P and K fertilizer requirements by combining the kriging interpolation method with the Nutrient Expert Decision Support System for Wheat.  The results indicated that the average attainable yield was 6.4 t ha−1, with a coefficient of variation (CV) of 24.9% across all sites.  The yields in North-central China (NCC) and the northern part of the Middle and Lower reaches of the Yangtze River (MLYR) were generally higher than 7 t ha−1, whereas the yields in Southwest China (SWC), Northeast China (NEC), and the eastern part of Northwest China (NWC) were usually less than 6 t ha−1.  The precentage of area having a relative yield above 0.70, 0.85, and 0.85 for N, P, and K fertilizers accounted for 52.3, 74.7, and 95.9%, respectively.  Variation existed in N, P, and K fertilizer requirements, with a CV of 24.8, 23.9, and 29.9%, respectively, across all sites.  More fertilizer was needed in NCC and the northern part of the MLYR than in other regions.  The average fertilizer requirement was 162, 72, and 57 kg ha−1 for N, P2O5, and K2O fertilizers, respectively, across all sites.  The incorporation of the spatial variation of attainable yield and fertilizer requirements into wheat production practices would benefit sustainable wheat production and environmental safety.
Reference | Related Articles | Metrics
Sunflower response to potassium fertilization and nutrient requirement estimation
LI Shu-tian, DUAN Yu, GUO Tian-wen, ZHANG Ping-liang, HE Ping, Kaushik Majumdar
2018, 17 (12): 2802-2812.   DOI: 10.1016/S2095-3119(18)62074-X
Abstract262)      PDF (909KB)(319)      
Field experiments were conducted in oil and edible sunflower to study the effects of potassium (K) fertilization on achene yield and quality, and to estimate the nutrient internal efficiency (IE) and nutrient requirement in sunflower production.  All trials in edible sunflower and 75% trials in oil sunflower showed positive yield responses to K fertilization.  Compared with control without K fertilization, the application of K increased achene yield by an average of 406 kg ha–1 for oil sunflower and 294 kg ha–1 for edible sunflower.  K application also increased 1 000-achene weight and kernel rate of both oil and edible sunflower.  K fertilization improved the contents of oil, oleic acid, linoleic acid and linolenic acid in achenes of oil sunflower, and increased contents of oil, total unsaturated fatty acid and protein in achenes of edible sunflower.  The average agronomic efficiency of K fertilizer was 4.0 for oil sunflower and 3.0 kg achene kg–1 K2O for edible sunflower.  The average IE of N, P and K under balanced NPK fertilization was 22.9, 82.8, and 9.9 kg kg–1 for oil sunflower, and 27.3, 138.9, and 14.3 kg kg–1 for edible sunflower.  These values were equivalent to 45.5, 14.1, and 108.1 kg, and 39.0, 8.0, and 71.7 kg of N, P and K, respectively, in above-ground dry matter required for production per ton of achenes.  The average harvest index of N, P and K was 0.47, 0.56 and 0.05 kg kg–1 in oil sunflower, and 0.58, 0.58 and 0.14 kg kg–1 in edible sunflower.   
Reference | Related Articles | Metrics
Optimizing Parameters of CSM-CERES-Maize Model to Improve Simulation Performance of Maize Growth and Nitrogen Uptake in Northeast China
LIU Hai-long, YANG Jing-yi, HE Ping, BAI You-lu, JINJi-yun , Craig FDrury, ZHUYe-ping , YANG Xue-ming, LI Wen-juan, XIE Jia-gui, YANGJing-min , Gerrit Hoogen boom
2012, 12 (11): 1898-1913.   DOI: 10.1016/S1671-2927(00)8726
Abstract1648)      PDF in ScienceDirect      
Crop models can be useful tools for optimizing fertilizer management for a targeted crop yield while minimizing nutrient losses. In this paper, the parameters of the decision support system for agrotechnology transfer (DSSAT)-CERES-Maize were optimized using a new method to provide a better simulation of maize (Zea mays L.) growth and N uptake in response to different nitrogen application rates. Field data were collected from a 5 yr field experiment (2006-2010) on a Black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China. After cultivar calibration, the CERES-Maize model was able to simulate aboveground biomass and crop yield of in the evaluation data set (n-RMSE=5.0-14.6%), but the model still over-estimated aboveground N uptake (i.e., with E values from -4.4 to -21.3 kg N ha-1). By analyzing DSSAT equation, N stress coefficient for changes in concentration with growth stage (CTCNP2) is related to N uptake. Further sensitivity analysis of the CTCNP2 showed that the DSSAT model simulated maize nitrogen uptake more precisely after the CTCNP2 coefficient was adjusted to the field site condition. The results indicated that in addition to calibrating 6 coefficients of maize cultivars, radiation use efficiency (RUE), growing degree days for emergence (GDDE), N stress coefficient, CTCNP2, and soil fertility factor (SLPF) also need to be calibrated in order to simulate aboveground biomass, yield and N uptake correctly. Independent validation was conducted using 2008-2010 experiments and the good agreement between the simulated and the measured results indicates that the DSSAT CERES-Maize model could be a useful tool for predicting maize production in Northeast China.
Reference | Related Articles | Metrics