Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Novel 18β-glycyrrhetinic acid amide derivatives show dual-acting capabilities for controlling plant bacterial diseases through ROS-mediated antibacterial efficiency and activating plant defense responses
SONG Ying-lian, LIU Hong-wu, YANG Yi-hong, HE Jing-jing, YANG Bin-xin, YANG Lin-li, ZHOU Xiang, LIU Li-wei, WANG Pei-yi, YANG Song
2023, 22 (9): 2759-2771.   DOI: 10.1016/j.jia.2022.10.009
Abstract205)      PDF in ScienceDirect      

Natural products have long been a crucial source of, or provided inspiration for new agrochemical discovery.  Naturally occurring 18β-glycyrrhetinic acid shows broad-spectrum bioactivities and is a potential skeleton for novel drug discovery.  To extend the utility of 18β-glycyrrhetinic acid for agricultural uses, a series of novel 18β-glycyrrhetinic acid amide derivatives were prepared and evaluated for their antibacterial potency.  Notably, compound 5k showed good antibacterial activity in vitro against Xanthomonas oryzae pv. oryzae (Xoo, EC50=3.64 mg L–1), and excellent protective activity (54.68%) against Xoo in vivo.  Compound 5k induced excessive production and accumulation of reactive oxygen species in the tested pathogens, resulting in damaging the bacterial cell envelope.  More interestingly, compound 5k could increase the activities of plant defense enzymes including catalase, superoxide dismutase, peroxidase, and phenylalanine ammonia lyase.  Taken together, these enjoyable results suggested that designed compounds derived from 18β-glycyrrhetinic acid showed potential for controlling intractable plant bacterial diseases by disturbing the balance of the phytopathogen’s redox system and activating the plant defense system

Reference | Related Articles | Metrics
The collagen type I alpha 1 chain gene is an alternative safe harbor locus in the porcine genome
XIANG Guang-ming, ZHANG Xiu-ling, XU Chang-jiang, FAN Zi-yao, XU Kui, WANG Nan, WANG Yue, CHE Jing-jing, XU Song-song, MU Yu-lian, LI Kui, LIU Zhi-guo
2023, 22 (1): 202-213.   DOI: 10.1016/j.jia.2022.08.105
Abstract283)      PDF in ScienceDirect      

Efficient and stable expression of foreign genes in cells and transgenic animals is important for gain-of-function studies and the establishment of bioreactors.  Safe harbor loci in the animal genome enable consistent overexpression of foreign genes, without side effects.  However, relatively few safe harbor loci are available in pigs, a fact which has impeded the development of multi-transgenic pig research.  We report a strategy for efficient transgene knock-in in the endogenous collagen type I alpha 1 chain (COL1A1) gene using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system.  After the knock-in of a 2A peptide-green fluorescence protein (2A-GFP) transgene in the last codon of COL1A1 in multiple porcine cells, including porcine kidney epithelial (PK15), porcine embryonic fibroblast (PEF) and porcine intestinal epithelial (IPI-2I) cells, quantitative PCR (qPCR), Western blotting, RNA-seq and CCK8 assay were performed to assess the safety of COL1A1 locus.  The qPCR results showed that the GFP knock-in had no effect (P=0.29, P=0.66 and P=0.20 for PK15, PEF and IPI-2I cells, respectively) on the mRNA expression of COL1A1 gene.  Similarly, no significant differences (P=0.64, P=0.48 and P=0.80 for PK15, PEF and IPI-2I cells, respectively) were found between the GFP knock-in and wild type cells by Western blotting.  RNA-seq results revealed that the transcriptome of GFP knock-in PEF cells had a significant positive correlation (P<2.2e–16) with that of the wild type cells, indicating that the GFP knock-in did not alter the global expression of endogenous genes.  Furthermore, the CCK8 assay showed that the GFP knock-in events had no adverse effects (P24h=0.31, P48h=0.96, P72h=0.24, P96h=0.17, and P120h=0.38) on cell proliferation of PK15 cells.  These results indicate that the COL1A1 locus can be used as a safe harbor for foreign genes knock-in into the pig genome and can be broadly applied to farm animal breeding and biomedical model establishment

Reference | Related Articles | Metrics
Chinese wheat mosaic virus: A long-term threat to wheat in China
GUO Liu-ming, HE Jing, LI Jing, CHEN Jian-ping, ZHANG Heng-mu
2019, 18 (4): 821-829.   DOI: 10.1016/S2095-3119(18)62047-7
Abstract272)      PDF (8544KB)(202)      
In China, a soil-borne virus causing a disease of winter wheat and associated with Polymyxa graminis, has been reported for many years and is now recognized as a new species, Chinese wheat mosaic virus (CWMV).  Since the determination of its genomic sequence, more progress has been made in understanding its genomic structure and functions.  Molecular and serological methods have been developed to help survey the distribution of the virus and to provide the basic information needed for disease forecasting and control.  At present, the best countermeasure is cultivation of resistant wheat varieties.  In addition, development and application of some auxiliary countermeasures, such as rotation of non-host crops, delayed seed-sowing, reasonable application of nitrogen fertilizer, and treatment of imported seeds with fungicides before sowing, may be helpful for controlling the disease.  The viral distribution and damage, virion properties, genome organization and spontaneous mutation, temperature sensitivity, and disease management options are here reviewed and/or discussed to help in developing more cost-effective countermeasures to control the disease in the future.
Reference | Related Articles | Metrics