Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Biosynthesis of artemisinic acid in engineered Saccharomyces cerevisiae and its attraction to the mirid bug Apolygus lucorum
TENG Dong, LIU Dan-feng, Khashaveh ADEL, SUN Pei-yao, GENG Ting, ZHANG Da-wei, ZHANG Yong-jun
2022, 21 (10): 2984-2994.   DOI: 10.1016/j.jia.2022.07.040
Abstract155)      PDF in ScienceDirect      

Artemisia annua is an important preferred host of the mirid bug Apolygus lucorum in autumn.  Volatiles emitted from Aannua attract Alucorum.  Volatile artemisinic acid of Aannua is a precursor of artemisinin that has been widely investigated in the Chinese herbal medicine field.  However, little is known at this point about the biological roles of artemisinic acid in regulating the behavioral trends of Alucorum.  In this study, we collected volatiles from Aannua at the seedling stage by using headspace solid phase microextraction (HS-SPME).  Gas chromatography-mass spectrometry (GC-MS) analysis showed that approximately 11.03±6.00 and 238.25±121.67 ng h–1 artemisinic acid were detected in volatile samples and milled samples, respectively.  Subsequently, a key gene for artemisinic acid synthesis, the cytochrome P450 gene cyp71av1, was expressed in engineered Saccharomyces cerevisiae to catalyze the production of artemisinic acid.  After the addition of exogenous artemisinic alcohol or artemisinic aldehyde, artemisinic acid was identified as the product of the expressed gene.  In electroantennogram (EAG) recordings, 3-day-old adult Alucorum showed significant electrophysiological responses to artemisinic alcohol, artemisinic aldehyde and artemisinic acid.  Furthermore, 3-day-old female bugs were significantly attracted by artemisinic acid and artemisinic alcohol at a concentration of 10 mmol L–1, whereas 3-day-old male bugs were attracted significantly by 10 mmol L–1 artemisinic acid and artemisinic aldehyde.  We propose that artemisinic acid and its precursors could be used as potential attractant components for the design of novel integrated pest management strategies to control Alucorum.

Reference | Related Articles | Metrics
Two-way predation between immature stages of the hoverfly Eupeodes corollae and the invasive fall armyworm (Spodoptera frugiperda J. E. Smith)
LI Hui, JIANG Shan-shan, ZHANG Hao-wen, GENG Ting, Kris A. G. WYCKHUYS, WU Kong-ming
2021, 20 (3): 829-839.   DOI: 10.1016/S2095-3119(20)63291-9
Abstract117)      PDF in ScienceDirect      
Since its 2018 invasion of eastern Asia, the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) has become a key pest in local maize production.  Though pesticides have been widely used to mitigate the initial S. frugiperda attack, biological control is receiving ample attention as a desirable, environmentally-sound alternative to chemical control.  Hoverflies (Diptera: Syrphidae) are abundant natural enemies in Chinese maize fields and have been observed to consume S. frugiperda larvae.  In this study, we use laboratory assays to study the two-way interaction between immature stages of S. frugiperda and the endemic syrphid Eupeodes corollae.  To mimic natural conditions, assays were performed in the presence of fresh maize leaves.  Those 2nd or 3rd instar larvae of E. corollae preyed on 1st and 2nd instar S. frugiperda larvae with a Holling type III response, consuming a respective theoretical maximum of 43.48 and 83.33 larvae over a 24-h period.  Conversely, once S. frugiperda larvae reached 3rd instar, they exhibited aggressive behavior and equally preyed on syrphid larvae with a Holling type III response.  Those 5th and 6th instar larvae of S. frugiperda consumed a respective 16.39–19.23, 6.02–19.61 and 6.76–8.26 of 1st, 2nd and 3rd instar E. corollae larvae per day.  Though our results await field-level validation, S. frugiperda agonistic (i.e., defensive) and consumptive behavior towards resident natural enemies such as E. corollae possibly degrades biotic resistance and raises its invasion potential.  Our findings shine new light on the interaction between lepidopteran herbivores and their natural enemies, and can help advance the development of conservation biological control and other integrated pest management (IPM) strategies against S. frugiperda in China and abroad.  
 
Reference | Related Articles | Metrics