Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability
DU Jun-bo, HAN Tian-fu, GAI Jun-yi, YONG Tai-wen, SUN Xin, WANG Xiao-chun, YANG Feng, LIU Jiang, SHU Kai, LIU Wei-guo, YANG Wen-yu
2018, 17 (04): 747-754.   DOI: 10.1016/S2095-3119(17)61789-1
Abstract1054)      PDF in ScienceDirect      
Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogical field lay-out of crops, low economic value, and labor deficiency, which cannot balance the crop production and agricultural sustainability. In view of this, we developed a novel soybean strip intercropping model using maize as the partner, the regular maize-soybean strip intercropping mainly popularized in northern China and maize-soybean relay-strip intercropping principally extended in southwestern China. Compared to the traditional maize-soybean intercropping systems, the main innovation of field lay-out style in our present intercropping systems is that the distance of two adjacent maize rows are shrunk as a narrow strip, and a strip called wide strip between two adjacent narrow strips is expanded reserving for the growth of two or three rows of soybean plants.  The distance between outer rows of maize and soybean strips are expanded enough for light use efficiency improvement and tractors working in the soybean strips.  Importantly, optimal cultivar screening and increase of plant density achieved a high yield of both the two crops in the intercropping systems and increased land equivalent ratio as high as 2.2.  Annually alternative rotation of the adjacent maize- and soybean-strips increased the grain yield of next seasonal maize, improved the absorption of nitrogen, phosphorus, and potasium of maize, while prevented the continuous cropping obstacles.  Extra soybean production was obtained without affecting maize yield in our strip intercropping systems, which balanced the high crop production and agricultural sustainability.
Reference | Related Articles | Metrics
Genetic Diversity of Chinese Soybean mosaic virus Strains and Their Relationships with Other Plant Potyviruses Based on P3 Gene Sequences
YANG Qing-hua, LI Kai, ZHI Hai-jian , GAI Jun-yi
2014, 13 (10): 2184-2195.   DOI: 10.1016/S2095-3119(13)60653-X
Abstract1125)      PDF in ScienceDirect      
Soybean mosaic virus (SMV), a member of the genus Potyvirus, is a major pathogen of soybean plants in China, and 16 SMV strains have been identified nationwide based on a former detailed SMV classification system. As the P3 gene is thought to be involved in viral replication, systemic infection, pathogenicity, and overcoming resistance, knowledge of the P3 gene sequences of SMV and other potyviruses would be useful in efforts to know the genetic relationships among them and control the disease. P3 gene sequences were obtained from representative isolates of the above-mentioned 16 SMV strains and were compared with other SMV strains and 16 Potyvirus species from the National Center for Biotechnology GenBank database. The P3 genes from the 16 SMV isolates are composed of 1 041 nucleotides, encoding 347 amino acids, and share 90.7-100% nucleotide (NT) sequence identities and 95.1-100% amino acid (AA) sequence identities. The P3 coding regions of the 16 SMV isolates share high identities (92.4-98.9% NT and 96.0-100% AA) with the reported Korean isolates, followed by the USA isolates (88.5-97.9% NT and 91.4-98.6% AA), and share low identities (80.5-85.2% NT and 82.1-84.7% AA) with the reported HZ1 and P isolates from Pinellia ternata. The sequence identities of the P3 genes between SMV and the 16 potyviruses varied from 44.4 to 81.9% in the NT sequences and from 21.4 to 85.3% in the AA sequences, respectively. Among them, SMV was closely related to Watermelon mosaic virus (WMV), with 76.0-81.9% NT and 77.5-85.3% AA identities. In addition, the SMV isolates and potyvirus species were clustered into six distinct groups. All the SMV strains isolated from soybean were clustered in Group I, and the remaining species were clustered in other groups. A multiple sequence alignment analysis of the C-terminal regions indicated that the P3 genes within a species were highly conserved, whereas those among species were relatively variable.
Reference | Related Articles | Metrics
QTL Identification of the Insensitive Response to Photoperiod and Temperature in Soybean by Association Mapping
ZUO Qiao-mei, WEN Zi-xiang, ZHANG Shu-yun, HOU Jin-feng, GAI Jun-yi, YU De-yue , XING Han
2013, 12 (8): 1423-1430.   DOI: 10.1016/S2095-3119(13)60554-7
Abstract1194)      PDF in ScienceDirect      
The insensitive response to photoperiod and temperature is an important quantitative trait for soybean in wide adaptation breeding. The natural variation in response to photoperiod and temperature was detected using 275 accessions of soybean [Glycine max (L.) Merrill] from China. Genome-wide association mapping, based on population structure analysis, was carried out using 118 SSR markers by the TASSEL GLM (general linear model) program. Nine SSR markers (P<0.01) were associated with the value of the response to photoperiod and temperature (VRPT) caused by days to flowering (DF), among which, Satt308 (LG M), Satt150 (LG M) and Satt440 (LG I), were identified in both 2006 and 2007. Twelve SSR markers (P<0.01) were associated with VRPT caused by days to maturity (DM), among which three markers, Satt387 (LG N), Satt307 (LG C2) and AW310961 (LG J), were detected in both 2006 and 2007. In addition, a total of 20 elite alleles were screened out over 2006 and 2007 for being associated with an insensitive response to photoperiod and temperature (IRPT) caused by DF and a total of seven different elite alleles were screened out for being associated with IRPT caused by DM. Among these elite alleles, five alleles, Satt150-244, Satt308-164, Satt308-206, Satt440-176, and Satt440-206, were associated with IRPT caused by DF and were identified in both years, but only one allele, Satt307-170, was identified as being associated with an IRPT caused by DM. Based on these elite alleles, a set of typical accessions were screened out. The result about the genetic basis of IRPT is meaningful for soybean wide adaption breeding.
Reference | Related Articles | Metrics
Cloning and Characterization of a Novel Gene GmMF1 in Soybean (Glycine max L. Merr.)
JIANG Wei, YANG Shou-ping, YU De-yue and GAI Jun-yi
2011, 10 (12): 1834-1841.   DOI: 10.1016/S1671-2927(11)60183-1
Abstract1700)      PDF in ScienceDirect      
Cytoplasmic male sterility plays an important role in utilization of crop heterosis. Screening of soybean for novel genes related to male sterility in soybean could provide a basis for studying the molecular mechanism of male sterility in plants. In this study, gene differential expressions between the cytoplasmic male-sterile line NJCMS1A and its maintainer line NJCMS1B in soybean were analyzed using cDNA-AFLP. A differentially expressed fragment, GmMF-T4A15, was isolated from large flower buds of NJCMS1B. By searching the soybean genomic library and PCR amplification, the cDNA fulllength sequence of 1 311 bp was obtained and named GmMF1. The expression characteristics of GmMF1 were studied by semiquantitative real-time PCR and real-time quantitative PCR. The results showed that GmMF1 was expressed highly in flower buds of NJCMS1B. The deduced protein contains 436 amino acids and shows high similarity to members of the DUF620 protein family with unknown functions in other plant species. It is predicted that the protein encoded by GmMF1 is localized in the nucleus.
Reference | Related Articles | Metrics
Identification, Genetic Analysis and Mapping of Resistance to Phytophthora sojae of Pm28 in Soybean
WU Xiao-ling, ZHANG Bao-qiang, SUN Shi, ZHAO Jin-ming, YANG Feng, GUO Na, GAI Jun-yi, XING Han
2011, 10 (10): 1506-1511.   DOI: 10.1016/S1671-2927(11)60145-4
Abstract2145)      PDF in ScienceDirect      
Phytophthora sojae Kanfman and Gerdemann (P. sojae) is one of the most prevalent pathogens and causes Phytophthora root rot, which limits soybean production worldwide. Development of resistant cultivars is a cost-effective approach to controlling this disease. In this study, 127 soybean germplasm were evaluated for their responses to Phytophthora sojae strain Pm28 using the hypocotyl inoculation technique, and 49 were found resistant to the strain. The hypocotyl of P1, P2, F1, and F2:3 of two crosses of Ludou 4 (resistant)×Youchu 4 (susceptible) and Cangdou 5 (resistant)×Williams (susceptible) were inoculated with Pm28, and were used to analyze the inheritance of resistance. The population derived from the cross of Ludou 4×Youchu 4 was used to map the resistance gene (designated as Rps9) to a linkage group. 932 pairs of SSR primers were used to detect polymorphism, and seven SSR markers were mapped near the resistance gene. The results showed that the resistance to Pm28 in Ludou 4 and Cangdou 5 was controlled by a single dominant gene Rps9, which was located on the molecular linkage group N between the SSR markers Satt631 (7.5 cM) and Sat_186 (4.3 cM).
Reference | Related Articles | Metrics