Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Dual carbon goal and agriculture in China: Exploring key factors influencing farmers’ behavior in adopting low carbon technologies
Jinpeng Zou, Lulin Shen, Fang Wang, Hong Tang, Ziyang Zhou
2024, 23 (9): 3215-3233.   DOI: 10.1016/j.jia.2024.07.016
Abstract125)      PDF in ScienceDirect      
Identifying the factors influencing farmers’ adoption of low-carbon technologies (FA) and understanding their impacts are essential for shaping effective agricultural policies amied at emission reduction and carbon sequestration in China.  This study employs a meta-analysis of 122 empirical studies, delves into 23 driving factors affecting FA and addresses the inconsistencies present in the existing literature.  We systematically examine the effect size, source of heterogeneity, and time-accumulation effect of the driving factors on FA.  We find that significant heterogeneity in the factors influencing FA, except for farming experience, sources of heterogeneity from the survey zone, methodology model, technological attributes, report source, financial support, and the sampling year.  Additionally, age, farming experience, and adoption cost negatively correlate with FA.  In contrast, educational level, health status, technical training, economic and welfare cognition, land contract, soil quality, terrain, information accessibility, demonstration, government promotion, government regulation, government support, agricultural cooperatives member, peer effect, and agricultural income ratio demonstrate a positive correlation.  Especially, demonstration and age show a particularly strong correlation.  Finally, the effect of demonstration, age, economic and welfare cognition, farming experience, land contract, soil quality, information accessibility, government promotion, and support, as well as agricultural cooperative membership and peer effects on FA, are generally stable but exhibit varying degrees of attenuation over time.  The effect of village cadre, family income, farm scale, gender, health status, technical training, and off-farm work on FA show notable temporal shifts and maintain a weak correlation with FA.  This study contributes to shaping China’s current low-carbon agriculture policies across various regions.  It encourages policymakers to comprehensively consider the stability of key factors, other potential factors, technological attributes, rural socio-economic context, and their interrelations.
Reference | Related Articles | Metrics
Identification and characterization of FpRco1 in regulating vegetative growth and pathogenicity based on T-DNA insertion in Fusarium pseudograminearum
Haiyang Li, Yuan Zhang, Cancan Qin, Zhifang Wang, Lingjun Hao, Panpan Zhang, Yongqiang Yuan, Chaopu Ding, Mengxuan Wang, Feifei Zan, Jiaxing Meng, Xunyu Zhuang, Zheran Liu, Limin Wang, Haifeng Zhou, Linlin Chen, Min Wang, Xiaoping Xing, Hongxia Yuan, Honglian Li, Shengli Ding
2024, 23 (9): 3055-3065.   DOI: 10.1016/j.jia.2024.01.001
Abstract161)      PDF in ScienceDirect      
Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot (FCR) in wheat and poses a significant threat to wheat production in terms of grain yield and quality.  However, the mechanism by which Fpseudograminearum infects wheat remains unclear.  In this study, we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of Fpseudograminearum.  By screening this mutant library, we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.  Among these mutants, one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1, encoding essential component of the Rpd3S histone deacetylase complex in F. pseudograminearum.  To further investigate the role of FpRCO1 in Fpseudograminearum, we employed a split-marker approach to knock out FpRCO1 in Fpseudograminearum WZ-8A.  FpRCO1 deletion mutants exhibit reduced vegetative growth, conidium production, and virulence in wheat coleoptiles and barley leaves, whereas the complementary strain restores these phenotypes.  Moreover, under stress conditions, the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl, sorbitol, and SDS, but possessed reduced sensitivity to H2O2 compared to these characteristics in the wild-type strain.  RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression (particularly the downregulation of TRI gene expression), thus resulting in significantly reduced deoxynivalenol (DON) production.  In summary, our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development, asexual reproduction, DON production, and pathogenicity of Fpseudograminearum.  This study provides valuable insights into the molecular mechanisms underlying Fpseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease.


Reference | Related Articles | Metrics
A CRISPR/Cas12a-based platform for rapid on-site bovine viral diarrhea virus diagnostics
Meixi Wang, Jitao Chang, Yuxin Han, Chaonan Wang, Songkang Qin, Jun Wang, Lulu Zhang, Yuanmao Zhu, Fei Xue, Fang Wang, Hongliang Chai, Yulong Wang, Xinjie Wang, Xin Yin
2024, 23 (8): 2872-2876.   DOI: 10.1016/j.jia.2024.03.074
Abstract106)      PDF in ScienceDirect      
Reference | Related Articles | Metrics
JrATHB-12 mediates JrMYB113 and JrMYB27 to control the anthocyanin levels in different types of red walnut
Haifeng Xu, Guifang Wang, Xinying Ji, Kun Xiang, Tao Wang, Meiyong Zhang, Guangning Shen, Rui Zhang, Junpei Zhang, Xin Chen
2024, 23 (8): 2649-2661.   DOI: 10.1016/j.jia.2024.03.015
Abstract139)      PDF in ScienceDirect      
Red walnut has broad market prospects because it is richer in anthocyanins than ordinary walnut.  However, the mechanism driving anthocyanin biosynthesis in red walnut is still unknown.  We studied two types of red walnut, called red walnut 1 (R1), with a red pericarp and seed coat, and red walnut 2 (R2), with a red seed coat only.  R1 mostly contained cyanidin-3-O-galactoside, while R2 contained a various amounts of cyanidin-3-O-galactoside, cyanidin-3-O-arabinoside, and cyanidin-3-O-glucoside.  The LDOX-2 (LOC109007163) and LDOX-3 (LOC109010746) genes, which encode leucoanthocyanidin dioxygenase/anthocyanidin synthase (LDOX/ANS), were preliminarily indicated as the crucial genes for anthocyanin biosynthesis in R1 and R2, respectively.  The MYB differential genes analysis showed that MYB27 and MYB113 are specifically expressed in the red parts of R1 and R2, respectively, and they are regarded as candidate regulatory genes.  Ectopic expression in Arabidopsis and transient injection in walnut showed that both MYB27 and MYB113 were located in the nucleus and promoted anthocyanin accumulation, while MYB27 promoted the expression of LDOX-2, and MYB113 promoted the expression of LDOX-3 and UAGT-3.  Yeast one-hybrid and electrophoretic mobility shift assays showed that MYB27 could only bind to the LDOX-2 promoter, while MYB113 could bind to the promoters of both LDOX-3 and UAGT-3.  In addition, we also identified an HD-Zip transcription factor, ATHB-12, which is specifically expressed in the pericarp.  After silencing the expression of ATHB-12, the R2 pericarp turned red, and MYB113 expression increased.  Further experiments showed that ATHB-12 could specifically interact with MYB113 and bind to its promoter.  This suggests that MYB27 controls R1 coloration by regulating LDOX-2, while MYB113 controls R2 coloration by regulating LDOX-3 and UAGT-3, but ATHB-12 can specifically bind to and inhibit the MYB113 of the R2 pericarp so that it becomes unpigmented.  This study reveals the anthocyanin biosynthetic mechanisms in two different types of red walnut and provides a scientific basis for the selection and breeding of red walnut varieties.


Reference | Related Articles | Metrics
Identification of key genes and metabolites involved in meat quality performance in Qinchuan cattle by WGCNA
Hengwei Yu, Zhimei Yang, Jianfang Wang, Huaxuan Li, Xuefeng Li, Entang Liang, Chugang Mei, Linsen Zan
2024, 23 (11): 3923-3937.   DOI: 10.1016/j.jia.2024.07.044
Abstract97)      PDF in ScienceDirect      
Understanding the genetic and metabolic elements that impact meat quality is crucial to improving production and meeting consumer demands in the beef sector.  Differences in meat quality among various muscle areas in beef cattle can impact pricing in the market.  Despite progress in genomics, the specific genes and metabolites that affect meat quality characteristics in Qinchuan cattle remain inadequately understood.  Therefore, this study aims to evaluate the meat quality characteristics of four specific muscle locations (tenderloin, striploin, high rib, and ribeye muscles) in Qinchuan bulls, including 10 traits (total protein content (TPC), intramuscular fat (IMF), non-esterified fatty acid (NEFA), meat color (L*, a*, and b*), shear force (SF), cooking loss (CL), pH0, and pH24).  This experiment uses transcriptome, metabolome sequencing, and sophisticated analytical methodologies such as weighted gene co-expression network analysis (WGCNA) and protein–protein interaction networks (PPI) to identify the key genes and metabolites associated with specific traits.  The findings highlight three notable genes (NDUFAB1, NDUFA12, and NDUFB7) linked to intramuscular fat (IMF), three key genes (CSRP3, ACAA3, and ACADVL) correlated with non-esterified fatty acids (NEFA), and one crucial gene (CREBBP) influencing meat color.  In conclusion, this investigation offers a new perspective on the differences in bovine muscle locations and contributes to the molecular understanding of bovine meat quality.  Future research endeavors could delve deeper into the identified genes and pathways to enhance beef cattle’s quality and yield.


Reference | Related Articles | Metrics
The shaping of milk-flavored white tea: More than a change in appearance
Jiao Feng, Weisu Tian, Jinyuan Wang, Shuping Ye, Guanjun Pan, Bugui Yu, Fang Wang, Hongzheng Lin, Zhilong Hao
2024, 23 (11): 3912-3922.   DOI: 10.1016/j.jia.2024.09.010
Abstract64)      PDF in ScienceDirect      
Tea’s popularity and flavor are influenced by factors like cultivation and processing methods and shaping techniques also have an impact on tea flavor.  This study employed targeted metabolomics and chemometrics to investigate how shaping techniques affect the flavor of milk-flavored white tea (MFWT).  The results showed that the tea cake sample with the shortest pressing time (Y90) has the highest amino acid content and milky aroma intensity.  There were variations in amino acids, catechins, and soluble sugars among MFWT samples with different shaping techniques.  The total contents of amino acids and catechins in tea cake sample (Y90) were significantly lower than those in the loose tea sample (SC) and bundle-like tea sample (SG), while the total sugar content was significantly higher than that in SC (P<0.05).  Additionally, the content of volatiles presenting milky aroma (VIP&OAV>1) in Y90 remained lower relative to SC and SG (P<0.05), but the proportion was not different from that in SC and SG, minimally affecting the overall flavor.  The short-time pressing method might be suitable for mass production of MFWT.  These findings provide insights into improving the tightness of the appearance of MFWT with minimal impact on tea flavor.


Reference | Related Articles | Metrics
A one-pot Cas12i3/Cas13d-based assay for rapid portable identification of genotype I and II African swine fever viruses
Zhe Wang, Haili Wang, Xinghui Yan, Jin Li, Yu Wang, Guosong Qin, Wenbo Sun, Yanfang Wang, Gaiping Zhang, Jianguo Zhao
DOI: 10.1016/j.jia.2025.02.013 Online: 13 February 2025
Abstract19)      PDF in ScienceDirect      
Reference | Related Articles | Metrics
OIVC medium enhances developmental competence in porcine preimplantation embryos
Yongjiang Yang, Ying Zhang, Qiang Liu, Shuangjie Tian, Wanyun Feng, Fangwen Deng, Guosong Qin, Yanfang Wang, Jianguo Zhao
DOI: 10.1016/j.jia.2025.03.005 Online: 18 March 2025
Abstract15)      PDF in ScienceDirect      

The developmental capacity of in vitro embryos is critical for the success of embryonic biotechnology. However, in vitro embryos often exhibit suboptimal quality, with fewer inner cell mass (ICM) cells and reduced total blastocyst cell counts compared to in vivo embryos. To address this, we optimized the conventional PZM-3 culture medium by supplementing 50% Advanced DMEM/F12 and 5% FBS on the fifth day after embryo activation (Day 5 medium) and resulted in a 2.5-fold increase in the total cell numbers of parthenogenetic activation (PA) derived blastocysts. Further enhancement was achieved by incorporating Activin A in Day 5 medium, creating the OIVC (Optimized In Vitro Culture) medium, which significantly increased both the total cell numbers and the ICM cell counts by 4.5-fold in the blastocyst stage. The OIVC medium also improved the quality of pig somatic cloned and in vitro fertilized (IVF) embryos. RNA sequencing analysis revealed that in the OIVC-treated embryos, most of the differentially expressed genes were downregulated compared to the control group, with the main enriched signaling pathways including Activin A/TGF-β. Notably, among these downregulated genes, PAX6 may be as a potential key gene influencing the number of ICM cells. This study presents a novel culture system that markedly enhances pig in vitro embryo quality, providing an efficient strategy for generating cloned pigs based on somatic cell nuclear transfer (SCNT) technology.

Reference | Related Articles | Metrics