Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Overexpression of PbrGA2ox1 enhances pear drought tolerance through the regulation of GA3-inhibited reactive oxygen species detoxification and abscisic acid signaling
Guoling Guo, Haiyan Zhang, Weiyu Dong, Bo Xu, Youyu Wang, Qingchen Zhao, Lun Liu, Xiaomei Tang, Li Liu, Zhenfeng Ye, Wei Heng, Liwu Zhu, Bing Jia
2024, 23 (9): 2989-3011.   DOI: 10.1016/j.jia.2024.01.012
Abstract171)      PDF in ScienceDirect      
Drought stress is a devastating natural disaster driven by the continuing intensification of global warming, which seriously threatens the productivity and quality of several horticultural crops, including pear.  Gibberellins (GAs) play crucial roles in plant growth, development, and responses to drought stress.  Previous studies have shown significant reductions of GA levels in plants under drought stress; however, our understanding of the intrinsic regulation mechanisms of GA-mediated drought stress in pear remains very limited.  Here, we show that drought stress can impair the accumulation of bioactive GAs (BGAs), and subsequently identified PbrGA2ox1 as a chloroplast-localized GA deactivation gene.  This gene was significantly induced by drought stress and abscisic acid (ABA) treatment, but was suppressed by GA3 treatment.  PbrGA2ox1-overexpressing transgenic tobacco plants (Nicotiana benthamiana) exhibited enhanced tolerance to dehydration and drought stresses, whereas knock-down of PbrGA2ox1 in pear (Pyrus betulaefolia) by virus-induced gene silencing led to elevated drought sensitivity.  Transgenic plants were hypersensitive to ABA, and had a lower BGAs content, enhanced reactive oxygen species (ROS) scavenging ability, and augmented ABA accumulation and signaling under drought stress compared to wild-type plants.  However, the opposite effects were observed with PbrGA2ox1 silencing in pear.  Moreover, exogenous GA3 treatment aggravated the ROS toxic effect and restrained ABA synthesis and signaling, resulting in the compromised drought tolerance of pear.  In summary, our results shed light on the mechanism by which BGAs are eliminated in pear leaves under drought stress, providing further insights into the mechanism regulating the effects of GA on the drought tolerance of plants.


Reference | Related Articles | Metrics
Single-seed sowing increased pod yield at a reduced seeding rate by improving root physiological state of Arachis hypogaea
LIANG Xiao-yan, GUO Feng, FENG Ye, ZHANG Jia-lei, YANG Sha, MENG Jing-jing, LI Xin-guo, WAN Shu-bo
2020, 19 (4): 1019-1032.   DOI: 10.1016/S2095-3119(19)62712-7
Abstract116)      PDF in ScienceDirect      
Double-seed sowing (two seeds per hole) is the dominant pattern of peanut sowing in China, but within-hole plant competition usually limits their growth and yield formation.  Besides, the traditional double-seed sowing method does not facilitate mechanization during sowing.  The objective of this study was to determine if single-seed sowing at a proper seeding rate yielded better than traditional double-seed sowing pattern and the differences of physiological metabolism of roots.  A field experiment was conducted in two consecutive years to compare pod yields of single-seed sowing at 180 000 (S180), 225 000 (S225), and 270 000 seeds ha–1 (S270) with that of double-seed sowing at 270 000 seeds ha–1 (D270) using a completely randomized block design with four replications.  And the root bleeding sap rate, nutrient content, and the main hormone contents in root bleeding sap were also comparatively investigated.  Although the pod yields of single-seed sowing at the three densities were higher than that of traditional double-seed sowing (D270), S225 yielded better than the other two single-seed sowing treatments (S180 and S270).  The increased pod yield in single-seed sowing at 225 000 seeds ha–1 was mainly due to the higher pod dry weight per plant and harvest index.  The improved pod dry weight and shoot growth had closely relationship with the enhanced root physiological traits such as the increased root bleeding sap rate, content of free amino acids, soluble sugars, K+, Mg2+, Zn2+, and Ca2+ of the individual plant root.  The improved activity of root reductive, nitrate reductase (NR) and ATPase and higher zeatin and zeatin riboside (Z+ZR) content of root bleeding sap were also crucial to the pod and shoot growth of peanut.  Single-seed sowing at a moderate seeding rate (S225) is a potential practice to increase pod yield and to save seed cost.
 
Reference | Related Articles | Metrics
Serologic and molecular survey for major viral pathogens in grazing hybrid wild boars in Northeast China
GUO Huan-cheng, REN Zhao-wen, DING Mei-ming, XIAO Wan-jun, PENG Peng, HE Biao, FENG Ye, LIU Yan, LI Xing-yu, CAI Jian-qiu, ZHANG Bi-kai, LUO Qing-hua, TU Chang-chun
2019, 18 (9): 2133-2140.   DOI: 10.1016/S2095-3119(19)62650-X
Abstract123)      PDF in ScienceDirect      
Hybrid wild boar husbandry is an important component of livestock production in Northeast China.  However, the current disease situation of these animals is largely unknown due to a lack of disease surveillance.  The present study was conducted to determine the prevalence of several important viral diseases in the hybrid wild boar population of Northeast China.  Between September 2015 to December 2016, 169 blood and 61 tissue samples were collected from apparently healthy hybrid wild boars from farms in Jilin, Inner Mongolia and Heilongjiang provinces.  ELISA detected serum antibodies against classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), pseudorabies virus (PRV), porcine circovirus type 2 (PCV2) and Japanese encephalitis virus (JEV), but not against African swine fever virus (ASFV), with PCV2 having the highest seropositive rate (87.2–100% in different farms).  RT-PCR or PCR performed on the processed samples detected only PCV2, with 33.1% (56/169) of blood samples and 32.8% (20/61) of spleen samples being positive, respectively, indicating widespread PCV2 infection in hybrid wild boars.  Phylogenetic analysis of 15 PCV2 ORF2 sequences showed that they belong to genotypes PCV2a, PCV2b and PCV2d, with nucleotide and deduced amino acid homologies of 88.5–100% and 88.1–100%, respectively. 
Reference | Related Articles | Metrics
Integrated transcriptomic and metabolomic analyses reveal a novel mechanism of resistance to Colletotrichum fructicola in pear
Xiaomei Tang, Yue Wang, Yuqing Guo, Luoluo Xie, Wei Song, Ziwen Xiao, Ruichang Yin, Zhe Ye, Xueqiu Sun, Wenming Wang, Lun Liu, Zhenfeng Ye, Zhenghui Gao, Bing Jia
DOI: 10.1016/j.jia.2024.12.041 Online: 02 January 2025
Abstract11)      PDF in ScienceDirect      

Pear anthracnose, caused by Colletotrichum fructicola, is a devastating disease that seriously affects most pear varieties, thereby compromising their yield and quality. However, effective control of this pathogen is lacking. Moreover, the critical resistance responses to C. fructicola in pear are unknown. To investigate these resistance mechanisms of pear against Colletotrichum fructicola, transcriptomic and metabolomic were performed and analyzed in pear anthracnose-resistant pear variety ‘Seli’ and the susceptible variety ‘Cuiguan’ after infection with C. fructicola, respectively. The differentially expressed genes and differentially accumulated metabolites (DAMs) were mainly related to metabolism and secondary metabolite synthetic pathways, including alpha-linoleic acid metabolism, phenylalanine biosynthesis metabolism, unsaturated fatty acids biosynthesis, and amino acids and derivatives biosynthesis etc. In particular, the accumulation of unsaturated fatty acids, amino acids and derivatives, such as linoleic acid and derivatives, lauric acid, N-acetyl-L-glutamic acid and L-proline was significantly increased in the resistant pear variety ‘Seli’ upon C. fructicola infection, while the amino acids of oxiglutatione and N-acetyl-L-glutamic acid, as well as the proanthocyanidins were significantly decreased in susceptible pear variety ‘Cuiguan’ upon C. fructicola infection, indicating that these metabolites were responsible for the different levels of resistance to anthracnose in ‘Seli’ and ‘Cuiguan’. Overall, our results provided new insights into pear anthracnose resistance regulation, and this may assist in developing new strategies to control pear anthracnose, as well as in breeding anthracnose-resistant varieties.

Reference | Related Articles | Metrics