Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Sunflower response to potassium fertilization and nutrient requirement estimation
LI Shu-tian, DUAN Yu, GUO Tian-wen, ZHANG Ping-liang, HE Ping, Kaushik Majumdar
2018, 17 (12): 2802-2812.   DOI: 10.1016/S2095-3119(18)62074-X
Abstract262)      PDF (909KB)(319)      
Field experiments were conducted in oil and edible sunflower to study the effects of potassium (K) fertilization on achene yield and quality, and to estimate the nutrient internal efficiency (IE) and nutrient requirement in sunflower production.  All trials in edible sunflower and 75% trials in oil sunflower showed positive yield responses to K fertilization.  Compared with control without K fertilization, the application of K increased achene yield by an average of 406 kg ha–1 for oil sunflower and 294 kg ha–1 for edible sunflower.  K application also increased 1 000-achene weight and kernel rate of both oil and edible sunflower.  K fertilization improved the contents of oil, oleic acid, linoleic acid and linolenic acid in achenes of oil sunflower, and increased contents of oil, total unsaturated fatty acid and protein in achenes of edible sunflower.  The average agronomic efficiency of K fertilizer was 4.0 for oil sunflower and 3.0 kg achene kg–1 K2O for edible sunflower.  The average IE of N, P and K under balanced NPK fertilization was 22.9, 82.8, and 9.9 kg kg–1 for oil sunflower, and 27.3, 138.9, and 14.3 kg kg–1 for edible sunflower.  These values were equivalent to 45.5, 14.1, and 108.1 kg, and 39.0, 8.0, and 71.7 kg of N, P and K, respectively, in above-ground dry matter required for production per ton of achenes.  The average harvest index of N, P and K was 0.47, 0.56 and 0.05 kg kg–1 in oil sunflower, and 0.58, 0.58 and 0.14 kg kg–1 in edible sunflower.   
Reference | Related Articles | Metrics
Spectral sensitivity of the compound eyes of Anomala corpulenta motschulsky (Coleoptera: Scarabaeoidea)
Jiang Yue-li, Guo Yu-yuan, Wu Yu-qing, Li Tong, Duan Yun, Miao Jin, Gong Zhong-jun, Huang Zhi-juan
2015, 14 (4): 706-713.   DOI: 10.1016/S2095-3119(14)60863-7
Abstract1907)      PDF in ScienceDirect      
The scarab beetle, Anomala corpulenta Motschulsky (Coleoptera: Scarabaeoidea), is a widespread and destructive pest in China. Vision is one of the most important means of acquiring information about the external environment. In order to contribute to the understanding of the perception of visual stimuli in this species, the light sensitivity and spectral responses of the scarab beetle, A. corpulenta, were measured by using an electroretinogram (ERG) technique. In total, 14 monochromatic light intensities, between 340 and 605 nm, were applied to the compound eyes of A. corpulenta under varying levels of adaptation to dark and light conditions. The results showed that all light stimuli induced an ERG response, with varied amplitudes. The spectral sensitivity curve of dark-adapted eyes showed one major peak (~400 nm; near-ultraviolet), a secondary peak (from 498 to 562 nm; yellow-green) and the third peakat 460 nm. By contrast, in light-adapted eyes, only a near-UV peak was observed. From these results, we conclude that the compound eye of A. corpulenta is likely to have at least three spectral types of photoreceptor. Significance of differences were also recorded in the responses of male and female compound eyes, as well as diurnally and nocturnally. The amplitude of ERG in response to white-light stimuli varied with the light intensity: The stronger the luminance, the higher the ERG value. This suggests that the compound eye of A. corpulenta adapts quickly to changing light conditions, enabling A. corpulenta to maintain nocturnal activities.
Reference | Related Articles | Metrics
Genetic Analysis and Mapping of an Enclosed Panicle Mutant Locus esp1 in Rice (Oryza sativa L.)
DUAN Yuan-lin, GUAN Hua-zhong, ZHUO Ming, CHEN Zhi-wei, LI Wen-tao, PAN Run-sen, MAO Da-mei, ZHOU Yuan-chang, WU Wei-ren
2012, 12 (12): 1933-1939.   DOI: 10.1016/S1671-2927(00)8729
Abstract1879)      PDF in ScienceDirect      
A mutant was isolated from the M2 of 60Co-g ray mutagenized male-fertility restorer line Zao-R974 in rice. The mutant showed pleiotropic phenotypes including dwarfism, delayed heading time, short and partially enclosed panicles, short uppermost internode, decreased grain and secondary branch numbers per panicle, and partially degenerated spikelets. The mutant was named as esp1 (enclosed shorter panicle 1). Genetic analysis indicated that the mutant phenotype was controlled by a recessive locus. Spraying exogenous GA3 did not rescue the panicle enclosure. Using an F2 and a BC1 population of the cross between esp1 and a japonica cultivar Nipponbare, we mapped the ESP1 locus to a region of ~260 kb on chromosome 11. This result provides a basis for further map-based cloning of the ESP1 locus.
Reference | Related Articles | Metrics