Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Cotton cultivation technology with Chinese characteristics has driven the 70-year development of cotton production in China
FENG Lu, CHI Bao-jie, DONG He-zhong
2022, 21 (3): 597-609.   DOI: 10.1016/S2095-3119(20)63457-8
Abstract283)      PDF in ScienceDirect      
Since the founding of the People’s Republic of China in 1949, significant achievements have been made in cotton production in China.  China has maintained its position as the world’s largest cotton producer for 33 years (1983–2015), with average annual increases of 3.5 and 3.9% in the unit yield and total output of cotton, respectively.  Cotton production has played an extremely important role in the development of the national economy and the improvement of living standards.  Although the cotton planting area has been reduced in recent years, the total output has remained relatively unchanged due to the continuous increase in the unit yield.  China’s dominant position in global cotton production is undoubtedly attributed to the progress and development of cotton cultivation technology.  Over the past 70 years, China has established a high-yielding and high-efficiency cotton cultivation mode that corresponds to its national conditions, including a large population and a limited land area.  Furthermore, cotton cultivation technology is constantly being innovated and developed to keep pace with the times.  In this paper, we review the development of cotton production and cultivation in China over the past 70 years, with a particular focus on the innovation and development of cotton cultivation technology with Chinese characteristics.  This review is intended to provide guidance for the sustainable development of China’s cotton production in the future and to provide a reference for global cotton production.

Reference | Related Articles | Metrics
Control of cotton pests and diseases by intercropping: A review
CHI Bao-jie, ZHANG Dong-mei, DONG He-zhong
2021, 20 (12): 3089-3100.   DOI: 10.1016/S2095-3119(20)63318-4
Abstract323)      PDF in ScienceDirect      
Cotton (Gossypium hirsutum L.) is a globally important crop that is often damaged by pests and diseases.  Current cotton pests and diseases management is dependent on chemical pesticides.  Although chemical pesticides are usually effective, long-term application of these pesticides often leads to increased insecticide resistance in the pests, fewer natural enemies, reduced natural control, and a degraded environment.  Because of increased environmental awareness and the need for sustainable cotton production, the control of cotton pests and diseases using biological means like intercropping is increasingly receiving attention.  Intercropping of cotton with other crops can often boost the total yield and output of the intercropping system and provide significant economic benefits without sacrificing cotton quality.  Intercropping also increases the number of natural enemies, and reduces the occurrence of cotton pests and diseases by altering the ecological structure and environmental conditions in the fields.  Cotton-based intercropping is an effective strategy to reduce the competition between cotton and grain or other economic crops for arable land.  It is also an important way to increase the populations of natural enemies in cotton fields for the management of pests and diseases.  However, inappropriate intercropping can also increase labor requirements and even result in inadequate control of pests and diseases.  This review focuses on the performance and the mechanisms of intercropping for reducing cotton pests and disease as well as on the effective management of intercropping systems.  The risks and limitations, as well as the study approaches needed and the prospects of intercropping for the control of cotton pests and diseases, are also discussed.  This information is intended to aid researchers and growers in designing economically viable and ecologically friendly pest and disease management strategies that will reduce the use of chemicals and the cost of cotton production.
 
Reference | Related Articles | Metrics