Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Intergeneric chromosome-specific painting reveals differential chromosomal transmission from Tripidium arundinaceum in sugarcane progeny
Fan Yu, Zehuai Yu, Jin Chai, Xikai Yu, Chen Fu, Xinwang Zhao, Hailong Chang, Jiawei Lei, Baoshan Chen, Wei Yao, Muqing Zhang, Jiayun Wu, Qinnan Wang, Zuhu Deng
2024, 23 (11): 3751-3762.   DOI: 10.1016/j.jia.2024.08.019
Abstract78)      PDF in ScienceDirect      
Sugarcane has recently attracted increasing attention for its potential as a source of sugar and bioethanol, so increasing its yield is essential to ensure the sugar security and bioenergy production.  Intergeneric hybridization is a highly efficient method to produce new genetic variants of crop plants, particularly those species with high ploidy such as sugarcane (Saccharum spp.).  Tripidium arundinaceum exhibits many desirable agronomic traits, and has been widely studied to produce hybrids with improved stress tolerance and other characteristics in sugarcane breeding.  However, the genetic relationship between Tarundinaceum and Saccharum species, and the individual Tarundinaceum chromosomal compositions in sugarcane hybrids are still elusive.  Here we used whole-genome single-nucleotide polymorphisms (SNPs) to ascertain the phylogenetic relationships between these species and found that Tarundinaceum is more closely related to Saccharum than Sorghum, in contrast to the previous narrow genetic analyses using chloroplast DNA.  Additionally, oligonucleotide (oligo)-based chromosome-specific painting derived from Saccharum officinarum was able to distinctly identify the chromosomes of Tarundinaceum.  We developed the oligo-genomic in situ hybridization (GISH) system for the first time, to unveil the novel chromosome translocations and the transmission of individual Tarundinaceum chromosomes in sugarcane progeny.  Notably, we discovered that the chromosomal transmission of T. arundinaceum exhibited several different inheritance modes, including n, 2n, and over 2n in the BC1 progenies.  Such inheritance patterns may have resulted from first division restitution (FDR) or FDR+nondisjunction of a chromosome with the sister chromatids in the second meiosis division/second division restitution (FDR+NSC/SDR) model during meiosis.  These results will be of substantial benefit for the further selection of T. arundinaceum chromosomes for sugarcane genetic improvement.


Reference | Related Articles | Metrics
Resistance risk and molecular mechanism associated with resistance to picoxystrobin in Colletotrichum truncatum and Colletotrichum gloeosporioides
SHI Niu-niu, LIAN Jin-pan, QIU De-zhu, CHEN Fu-ru, DU Yi-xin
2023, 22 (12): 3681-3693.   DOI: 10.1016/j.jia.2023.07.037
Abstract188)      PDF in ScienceDirect      

Anthracnose, caused by Colletotrichum truncatum and Cgloeosporioides, is amongst the most serious diseases of soybean in China.  Picoxystrobin, a quinone outside inhibitor fungicide, is commonly used for the control of anthracnose.  Its resistance risk and mechanism in Ctruncatum and Cgloeosporioides are unclear.  In this study, the sensitivities of 128 Ctruncatum and 121 Cgloeosporioides isolates to picoxystrobin were investigated, and unimodal distributions were observed with average EC50 values of 0.7740 and 1.1561 μg mL–1, respectively.  Eleven picoxystrobin-resistant mutants of Ctruncatum and six mutants of Cgloeosporioides were acquired, with EC50 values varying from 5.40–152.96 and 13.53–28.30 μg mL–1, respectively.  Compared to the parental isolates, mutants showed similar or higher relative fitness in conidial production and germination, and pathogenicity.  Collectively, the resistance risk of Ctruncatum and Cgloeosporioides to picoxystrobin is moderate to high.  There was positive cross-resistance between picoxystrobin and pyraclostrobin, but not between picoxystrobin and fluazinam, difenoconazole, or propiconazole.  The G143S mutation in Cyt b protein was detected in seven high-resistant mutants of Ctruncatum (RF>100), and G137R occurred in four moderate-resistant mutants (RF<50).  Contrastingly, there were no point mutations in Cyt b of any Cgloeosporioides mutants.  Molecular docking confirmed that two mutations conferred different resistance levels to picoxystrobin.  Under greenhouse trials, picoxystrobin did not control mutants with the G143S mutation, those bearing G137R or no point mutation were somewhat controlled, but at a lower level compared to wild-type isolates.  These results showed that integrated management strategies should be implemented to preserve fungicide effectiveness.

Reference | Related Articles | Metrics
Impacts of climate change on drought risk of winter wheat in the North China Plain
ZHANG Li, CHU Qing-quan, JIANG Yu-lin, CHEN Fu, LEI Yong-deng
2021, 20 (10): 2601-2612.   DOI: 10.1016/S2095-3119(20)63273-7
Abstract196)      PDF in ScienceDirect      
Drought is a major natural disaster causing crop yield losses, while its occurrence mechanism and spatiotemporal variations in a changing climate are still not clear. Based on a long-term climatic dataset (during 1958–2015) from weather stations in the North China Plain (NCP), the influencing mechanism of various climatic factors on drought risk of winter wheat was quantified by using sensitivity analysis, Mann-Kendall trend test and slope estimation. The results indicated that climatic factors have changed considerably over the past six decades in the growth season of winter wheat. As a result, winter wheat suffered from severe droughts (with 350 mm of water deficit during its growth season), particularly at the jointing–heading and heading–mature stages, which were critical to crop yield formation. There were large spatial and temporal variations in drought risk and climatic change factors at different growth stages of winter wheat. Despite precipitation playing a vital role in determining the spatiotemporal patterns of drought risk, high temperature and low humidity along with other climatic factors at key growth stages of winter wheat aggravated drought risk. Particularly, temperature at nearly 90% weather stations showed a notablely upward trend, which exacerbated water deficit and drought risk of winter wheat. Given the complexity and high uncertainty of climate change, these findings provide important information for adapting crop production to future climate change and accompanied droughts while ensuring food security and agricultural sustainability.
Reference | Related Articles | Metrics
Pyraclostrobin-loaded poly (lactic-co-glycolic acid) nanospheres: Preparation and characteristics
YIN Ming-ming, ZHENG Yu, CHEN Fu-liang
2018, 17 (08): 1822-1832.   DOI: 10.1016/S2095-3119(17)61839-2
Abstract312)      PDF in ScienceDirect      
We used poly (lactic-co-glycolic acid) (PLGA) as a carrier polymer for pyraclostrobin-loaded nanospheres.  Using the ultrasound emulsification-solvent evaporation method, the physicochemical characteristics and release properties of the pyraclostrobin-loaded nanospheres were studied by dialysis.  The optimal nanospheres prepared had a diameter of 0.6 μm, an active ingredient loading of 17.2%, and a loading rate of 89.7%.  Infrared spectroscopy data and differential scanning calorimetry revealed that pyraclostrobin was successfully embedded in the carrier PLGA, and photostability tests indicated enhanced ultraviolet resistance of pyraclostrobin-loaded PLGA nanospheres nanospheres.  Release property testing indicated that smaller particles had a faster release rate.  Nanospheres also had a faster release rate in slightly acidic and slightly basic environments than in a neutral condition.  Agitated nanospheres had a faster release rate than immobile nanospheres.  The cumulative release kinetics of pyraclostrobin-loaded nanospheres was consistent with the first order kinetic equation and the Weibull equation.
Reference | Related Articles | Metrics
Release performance and sustained-release efficacy of emamectin benzoate-loaded polylactic acid microspheres
YIN Ming-ming, ZHU Xin-yan, CHEN Fu-liang
2018, 17 (03): 640-647.   DOI: 10.1016/S2095-3119(17)61763-5
Abstract618)      PDF in ScienceDirect      
High-performance liquid chromatography (HPLC) was employed to determine drug release rates based on emamectin benzoate concentrations in the medium.  Release kinetics equations were used to fit the drug release behavior.  The effects of particle size and release medium pH on the release rate were also investigated.  The indoor toxicity of emamectin benzoate-loaded polylactic acid microspheres on the diamondback moth larva (Plutella xylostella) was studied to explore drug sustained-release performance.  In acidic and neutral media, the drug release behavior of the microspheres was in accord with the first-order kinetics equation.  Increasing the spray dosage of emamectin benzoate-loaded polylactic acid microspheres initially resulted in an equivalent insecticidal efficacy with the conventional emamectin benzoate microemulsion.  However, the drug persistence period was four-fold longer than that observed using the conventional formulation.  The developed emamectin benzoate-loaded polylactic acid microspheres showed dramatic sustained-release performance.  A treatment threshold of greater than 35 mg mL–1 was established for an efficient accumulated release concentration of emamectin benzoate-loaded microspheres.
Reference | Related Articles | Metrics
A callus transformation system for gene functional studies in soybean
XU Kun, ZHANG Xiao-mei, FAN Cheng-ming, CHEN Fu-lu, ZHU Jin-long, ZHANG Shi-long, CHEN Qing-shan, FU Yong-fu
2017, 16 (09): 1913-1922.   DOI: 10.1016/S2095-3119(16)61621-0
Abstract748)      PDF in ScienceDirect      
    Obtaining transgenic plants is a common method for analyzing gene function. Unfortunately, stable genetic transformation is difficult to achieve, especially for plants (e.g., soybean), which are recalcitrant to genetic transformation. Transient expression systems, such as Arabidopsis protoplast, Nicotiana leaves, and onion bulb leaves are widely used for gene functional studies. A simple method for obtaining transgenic soybean callus tissues was reported recently. We extend this system with simplified culture conditions to gene functional studies, including promoter analysis, expression and subcellular localization of the target protein, and protein-protein interaction. We also evaluate the plasticity of this system with soybean varieties, different vector constructs, and various Agrobacterium strains. The results indicated that the callus transformation system is efficient and adaptable for gene functional investigation in soybean genotype-, vector-, and Agrobacterium strain-independent modes. We demonstrated an easy set-up and practical homologous strategy for soybean gene functional studies.
Reference | Related Articles | Metrics
Wheat, maize and sunflower cropping systems selectively influence bacteria community structure and diversity in their and succeeding crop’s rhizosphere
WEN Xin-ya, Eric Dubinsky, WU Yao, Yu Rong, CHEN Fu
2016, 15 (8): 1892-1902.   DOI: 10.1016/S2095-3119(15)61147-9
Abstract1324)      PDF in ScienceDirect      
    Wheat and maize are increasingly used as alternative crops to sunflower monocultures that dominate the Hetao Irrigation District in China. Shifts from sunflower monocultures to alternate cropping systems may have significant effects on belowground microbial communities which control nutrient cycling and influence plant productivity. In this research, rhizosphere bacterial communities were compared among sunflower, wheat and maize cropping systems by 454 pyrosequencing. These cropping systems included 2 years wheat (cultivar Yongliang 4) and maize (cultivar Sidan 19) monoculture, more than 20 years sunflower (cultivar 5009) monoculture, and wheat-sunflower and maize-sunflower rotation. In addition, we investigated rhizosphere bacterial communities of healthy and diseased plants at maturity to determine the relationship between plant health and rotation effect. The results revealed taxonomic information about the overall bacterial community. And significant differences in bacterial community structure were detected among these cropping systems. Eight of the most abundant groups including Proteobacteria, Bacteroidetes, Acidobacteria, Gemmatimonadetes, Chloroflexi, Actinobacteria, Planctomycetes and Firmicutes accounted for more than 85% of the sequences in each treatment. The wheat-wheat rhizosphere had the highest proportion of Acidobacteria, Bacteroidetes and the lowest proportion of unclassified bacteria. Wheat-sunflower cropping system showed more abundant Acidobacteria than maize-sunflower and sunflower monoculture, exhibiting some influences of wheat on the succeeding crop. Maize-maize rhizosphere had the highest proportion of γ- Proteobacteria, Pseudomonadales and the lowest proportion of Acidobacteria. Sunflower rotation with wheat and maize could increase the relative abundance of the Acidobacteria while decrease the relative abundance of the unclassified phyla, as was similar with the health plants. This suggests some positive impacts of rotation with wheat and maize on the bacterial communities within a single field. These results demonstrate that different crop rotation systems can have significant effects on rhizosphere microbiomes that potentially alter plant productivities in agricultural systems.
Reference | Related Articles | Metrics
Non-leguminous winter cover crop and nitrogen rate in relation to double rice grain yield and nitrogen uptake in Dongting Lake Plain, Hunan Province, China
ZHU Bo, YI Li-xia, XU He-shui, GUO Li-mei, HU Yue-gao, ZENG Zhao-hai, CHEN Fu, LIU Zhang-yong
2016, 15 (11): 2507-2514.   DOI: 10.1016/S2095-3119(16)61331-X
Abstract1264)      PDF in ScienceDirect      
      Annual ryegrass (Lolium multiflorum Lam.), a non-leguminous winter cover crop, has been adopted to absorb soil native N to minimize N loss from an intensive double rice cropping system in southern China, but a little is known about its effects on rice grain yield and rice N use efficiency. In this study, effects of ryegrass on double rice yield, N uptake and use efficiency were measured under different fertilizer N rates. A 3-year (2009–2011) field experiment arranged in a split-plot design was undertaken. Main plots were ryegrass (RG) as a winter cover crop and winter fallow (WF) without weed. Subplots were three N treatments for each rice season: 0 (N0), 100 (N100) and 200 kg N ha–1 (N200). In the 3-year experiment, RG reduced grain yield and plant N uptake for early rice (0.4–1.7 t ha–1 for grain yield and 4.6–20.3 kg ha–1 for N uptake) and double rice (0.6–2.0 t ha–1 for grain yield and 6.3–27.0 kg ha–1 for N uptake) when compared with WF among different N rates. Yield and N uptake decrease due to RG was smaller in N100 and N200 plots than in N0 plots. The reduction in early rice grain yield in RG plots was associated with decrease number of panicles. Agronomic N use efficiency and fertilizer N recovery efficiency were higher in RG plots than winter fallow for early rice and double rice among different N rates and experimental years. RG tended to have little effect on grain yield, N uptake, agronomic N use efficiency, and fertilizer N recovery efficiency in the late rice season. These results suggest that ryegrass may reduce grain yield while it improves rice N use efficiency in a double rice cropping system.
Reference | Related Articles | Metrics
Soil carbon storage and stratification under different tillage/ residue-management practices in double rice cropping system
CHEN Zhong-du, ZHANG Hai-lin, S Batsile Dikgwatlhe, XUE Jian-fu, QIU Kang-cheng, TANG Hai-ming, CHEN fu
2015, 14 (8): 1551-1560.   DOI: 10.1016/S2095-3119(15)61068-1
Abstract2109)      PDF in ScienceDirect      
The importance of soil organic carbon (SOC) sequestration in agricultural soils as climate-change-mitigating strategy has become an area of focus by the scientific community in relation to soil management. This study was conducted to determine the temporal effect of different tillage systems and residue management on distribution, storage and stratification of SOC, and the yield of rice under double rice (Oryza sativa L.) cropping system in the southern China. A tillage experiment was conducted in the southern China during 2005–2011, including plow tillage with residue removed (PT0), plow tillage with residue retention (PT), rotary tillage with residue retention (RT), and no-till with residue retention on the surface (NT). The soil samples were obtained at the harvesting of late rice in October of 2005, 2007 and 2011. Multiple-year residue return application significantly increased rice yields for the two rice-cropping systems; yields of early and late rice were higher under RT than those under other tillage systems in both years in 2011. Compared with PT0, SOC stocks were increased in soil under NT at 0–5, 5–10, 10–20, and 20–30 cm depths by 33.8, 4.1, 6.6, and 53.3%, respectively, in 2011. SOC stocks under RT were higher than these under other tillage treatments at 0–30 cm depth. SOC stocks in soil under PT were higher than those under PT0 in the 0–5 and 20–30 cm soil layers. Therefore, crop residues played an important role in SOC management, and improvement of soil quality. In the 0–20 cm layer, the stratification ratio (SR) of SOC followed the order NT>RT>PT>PT0; when the 0–30 cm layer was considered, NT also had the highest SR of SOC, but the SR of SOC under PT was higher than that under RT with a multiple-year tillage practice. Therefore, the notion that conservation tillage lead to higher SOC stocks and soil quality than plowed systems requires cautious scrutiny. Nevertheless, some benefits associated with RT system present a greater potential for its adoption in view of the multiple-year environmental sustainability under double rice cropping system in the southern China.
Reference | Related Articles | Metrics
Net energy yield and carbon footprint of summer corn under different N fertilizer rates in the North China Plain
WANG Zhan-biao, WEN Xin-ya, ZHANG Hai-lin, LU Xiao-hong, CHEN Fu
2015, 14 (8): 1534-1541.   DOI: 10.1016/S2095-3119(15)61042-5
Abstract2054)      PDF in ScienceDirect      
Excessive use of N fertilizer in intensive agriculture can increase crop yield and at the same time cause high carbon (C) emissions. This study was conducted to determine optimized N fertilizer application for high grain yield and lower C emissions in summer corn (Zea mays L.). A field experiment, including 0 (N0), 75 (N75), 150 (N150), 225 (N225), and 300 (N300) kg N ha–1 treatments, was carried out during 2010–2012 in the North China Plain (NCP). The results showed that grain yield, input energy, greenhouse gas (GHG) emissions, and carbon footprint (CF) were all increased with the increase of N rate, except net energy yield (NEY). The treatment of N225 had the highest grain yield (10 364.7 kg ha–1) and NEY (6.8%), but the CF (0.25) was lower than that of N300, which indicates that a rate of 225 kg N ha–1 can be optimal for summer corn in NCP. Comparing GHG emision compontents, N fertilizer (0–51.1%) was the highest and followed by electricity for irrigation (19.73–49.35%). We conclude that optimazing N fertilizer application rate and reducing electricity for irrigation are the two key measures to increase crop yield, improve energy efficiency and decrease GHG emissions in corn production.
Reference | Related Articles | Metrics
Applying a salinity response function and zoning saline land for three field crops: a case study in the Hetao Irrigation District, Inner Mongolia, China
TONG Wen-jie1, CHEN Xiao-li2, WEN Xin-ya1, CHEN Fu1, ZHANG Hai-lin1, CHU Qing-quan1, Shadrack Batsile Dikgwatlhe1
2015, 14 (1): 178-189.   DOI: 10.1016/S2095-3119(14)60761-9
Abstract1895)      PDF in ScienceDirect      
Salinity is one of the major abiotic factors affecting the growth and productivity of crops in Hetao Irrigation District, China. In this study, the salinity tolerances of three local crops, wheat (Triticum aestinum L.), maize (Zea mays L.) and sunflower (Helianthus annuus L.), growing in 76 farm fields are evaluated with modified discount function. Salinity ecological zones appropriate for these local crops are characterized and a case study is presented for crop salinity ecological zoning. The results show that the yield reductions of wheat, maize and sunflower when grown in saline soils are attributed primarily to a reduction in spikelet number, 1 000-grain weight and seed number per head, respectively. Sunflower is the most tolerant crop among the three which had a salinity tolerance index (ST-index) of 12.24, followed by spring maize and spring wheat with ST-Indices of 9.00 and 7.43, respectively. According to the crop salinity tolerance results, the arable land in the Heping Village of this district was subdivided into four salinity ecological zones: the most suitable, suitable, sub-suitable and unsuitable zones. The area proportion of the most suitable zone for wheat, maize and sunflower within the Heping Village was 27.5, 46.5 and 77.5%, respectively. Most of the most suitable zone occurred in the western part of the village. The results of this study provide the scientific basis for optimizing the local major crop distribution and improving cultural practices management in Hetao Irrigation District.
Reference | Related Articles | Metrics
The Effects of Climate Change on the Planting Boundary and Potential Yield for Different Rice Cropping Systems in Southern China
YE Qing, YANG Xiao-guang, LIU Zhi-juan, DAI Shu-wei, LI Yong, XIE Wen-juan, CHEN Fu
2014, 13 (7): 1546-1554.   DOI: 10.1016/S2095-3119(14)60809-1
Abstract1682)      PDF in ScienceDirect      
Based on climate data from 254 meteorological stations, this study estimated the effects of climate change on rice planting boundaries and potential yields in the southern China during 1951-2010. The results indicated a significant northward shift and westward expansion of northern boundaries for rice planting in the southern China. Compared with the period of 1951-1980, the average temperature during rice growing season in the period of 1981-2010 increased by 0.4°C, and the northern planting boundaries for single rice cropping system (SRCS), early triple cropping rice system (ETCRS), medium triple cropping rice system (MTCRS), and late triple cropping rice system (LTCRS) moved northward by 10, 30, 52 and 66 km, respectively. In addition, compared with the period of 1951-1980, the suitable planting area for SRCS was reduced by 11% during the period of 1981-2010. However, the suitable planting areas for other rice cropping systems increased, with the increasing amplitude of 3, 8, and 10% for ETCRS, MTCRS and LTCRS, respectively. In general, the light and temperature potential productivity of rice decreased by 2.5%. Without considering the change of rice cultivars, the northern planting boundaries for different rice cropping systems showed a northward shift tendency. Climate change resulted in decrease of per unit area yield for SRCS and the annual average yields of ETCRS and LTCRS. Nevertheless, the overall rice production in the entire research area showed a decreasing trend even with the increasing trend of annual average yield for MTCRS.
Reference | Related Articles | Metrics
Cropping Pattern Modifications Change Water Resource Demands in the Beijing Metropolitan Area
HUANG Jing, Bradley GRidoutt, XU Chang-chun, ZHANG Hai-lin , CHEN Fu
2012, 12 (11): 1914-1923.   DOI: 10.1016/S1671-2927(00)8727
Abstract1357)      PDF in ScienceDirect      
Adequate freshwater supply has become an issue of increasing local and international concern. Reducing water use in agriculture, which is the largest water using sector of the economy, is both important and urgent. The aim of this paper was to quantify how recent cropping pattern changes have influenced water resources in the great Beijing metropolitan area, an expanding megacity which also includes rural counties. Crop production affects blue water use through water consumption and water pollution, the latter assessed here using a critical dilution method. From 1990 to 2010, the total blue water used by crop production declined due to a decrease in overall cropped area, initially in response to local government policies favouring urban development. However, the average blue water use per hectare increased from 2 112 m3 ha-1 yr-1 in 1990 to 2 764 m3 ha-1 yr-1 in 2003, largely as the result of a transition from cereal to vegetable crops, and in particular an increase in intensively managed plastic and glass covered vegetable production systems. Current policies aim to conserve agricultural land, in the interests of food security, and to stimulate cereal production systems with higher ecosystem services provision. As such, in 2010 the average blue water use was 2 425 m3 ha-1 yr-1. These results demonstrate that cropping pattern changes in peri-urban regions and rural communities surrounding the Beijing metropolitan area can have a substantial impact on water resources. They also highlight the tradeoffs between food production and urban and industrial water supply and the need for integrated policy development.
Reference | Related Articles | Metrics
Optimization of Two-Dimensional Gel Electrophoresis for Kenaf Leaf Proteins
CHEN Tao, QI Jian-min, XU Jian-tang, CHEN Pin-pin, TAO Ai-fen, CHEN Fu-cheng , CHEN Wei
2011, 10 (12): 1842-1850.   DOI: 10.1016/S1671-2927(11)60184-3
Abstract1711)      PDF in ScienceDirect      
To establish a suitable and effective protocol of protein extraction for two-dimensional gel electrophoresis (2-DE) analysis in kenaf leaf tissues, three extraction methods (trichloroacetic acid/acetone, urea/thiourea, and phenol extraction methods) were applied to the extraction of kenaf leaf protein. The results were compared in regard to protein extraction efficiency, sodiumdodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and 2-DE gels. Furthermore, the 2-DE system was optimized for four aspects: the pH range of IPG (immobilized pH gradient) stripes, sampling methods, sample volumes, and concentration of polyacrylamide gels. The data presented showed that the phenol extraction method is the best method to perform 2-DE analysis of kenaf leaf protein. The protein extracted from phenol extraction method reached the purity of (26.40±0.859)%, showed (25.67±1.53) protein bands in one dimension SDS-PAGE gels, and (1 374±54.44) protein spots on 2-DE gels. The research also indicates that kenaf leaf protein spots were distributed mainly within the pH range of 4-8. More clear background with a better distribution effect and many protein spots could be obtained on 2-DE gels under the conditions of active rehydration loading, 24 cm IPG strips (linear pH gradient of 4-7), 1.4 mg samples, and 12% SDS-PAGE gels.
Reference | Related Articles | Metrics
Application of dsRNA of FgPMA1 for disease control on Fusarium graminearum
WU Luo-yu, CHEN Fu-rong, WANG Peng-wei, XU Chong-jing, WEN Wei-dong, HAHN Matthias, ZHOU Ming-guo, HOU Yi-ping
DOI: 10.1016/j.jia.2023.11.046 Online: 29 November 2023
Abstract81)      PDF in ScienceDirect      

Fusarium graminearum is a fungal plant pathogen which causes Fusarium head blight (FHB), a devastating disease on cereal crops. Here we report that FgPMA1 could be a new target to control FHB by the application of double-stranded RNA (dsRNA) of FgPMA1. FgPMA1 was divided into 6 segments to generated RNA interference (RNAi) constructs (FgPMA1RNAi-1, -2, -3, -4, -5, and -6), and these constructs were transformed in F. graminearum strain PH-1. The expression of FgPMA1 reduced by 18.48%, 33.48% and 56.93% in FgPMA1RNAi-1, FgPMA1RNAi-2 and FgPMA1RNAi-5, respectively. FgPMA1RNAi-1, -2, and -5 mutants inhibited fungal development, including mycelium growth, mycelial morphology, asexual and sexual development, and toxin production. The length of lesions on wheat leaves, wheat coleoptiles and wheat ears were shorter after infection with FgPMA1RNAi-1, -2, and -5 mutants than wild-type PH-1. These results showed that three segments (FgPMA1RNAi-1, -2, and -5) exhibited effective silencing effects. After treatment with 25 ng µL-1 dsRNA of these segments in vitro, the growth rate of mycelium growth was significant decreased, mycelium became deformed with bulbous structure at the tip, and the mycelium lost the ability to produce conidia in F. graminearum strain PH-1, Fusarium asiacitum strain 2021 and phenamacril-resistant strain YP-1. After application of FgPMA1RNAi-1-dsRNA and FgPMA1RNAi-2-dsRNA to wheat ears, pathogenicity reduced 34.21-35.40%. 

Reference | Related Articles | Metrics