Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Physiological and biochemical characteristics of boscalid resistant isolates of Sclerotinia sclerotiorum from asparagus lettuce
SHI Dong-ya, LI Feng-jie, ZHANG Zhi-hui, XU Qiao-nan, CAO Ying-ying, Jane Ifunanya MBADIANYA, LI Xin, WANG Jin, CHEN Chang-jun
2023, 22 (12): 3694-3708.   DOI: 10.1016/j.jia.2023.09.024
Abstract318)      PDF in ScienceDirect      

Laboratory mutants of Sclerotinia sclerotiorum (Lib) de Bary, resistant to boscalid, have been extensively characterized.  However, the resistance situation in the lettuce field remains largely elusive.  In this study, among the 172 Ssclerotiorum isolates collected from asparagus lettuce field in Jiangsu Province, China, 132 isolates (76.74%) exhibited low-level resistance to boscalid (BosLR), with a discriminatory dose of 5 μg mL–1.  In comparison to the boscalid-sensitive (BosS) isolates, most BosLR isolates demonstrated a slightly superior biological fitness, as evidenced by data on mycelial growth, sclerotium production and pathogenicity.  Moreover, most BosLR isolates showed comparable levels of oxalic acid (OA) accumulation, increased exopolysaccharide (EPS) content and reduced membrane permeability when compared to the BosS isolates.  Nevertheless, their responses to distinct stress factors diverged significantly.  Furthermore, the effectiveness of boscalid in controlling BosLR isolates on radish was diminished compared to its efficacy on BosS isolates.  Genetic mutations were identified in the SDH genes of BosLR isolates, revealing the existence of three resistant genotypes: I (A11V at SDHB, SDHBA11V), II (Q38R at SDHC, SDHCQ38R) and III (SDHBA11V+SDHCQ38R).  Importantly, no cross-resistance was observed between boscalid and other fungicides such as thifluzamide, pydiflumetofen, fluazinam, or tebuconazole.  Our molecular docking analysis indicated that the docking total score (DTS) of the type I resistant isolates (1.3993) was lower than that of the sensitive isolates (1.7499), implying a reduced affinity between SDHB and boscalid as a potential mechanism underlying the boscalid resistance in Ssclerotiorum.  These findings contribute to an enhanced comprehension of boscalid’s mode of action and furnish valuable insights into the management of boscalid resistance.

Reference | Related Articles | Metrics
The transcription factor FgNsf1 regulates fungal development, virulence and stress responses in Fusarium graminearum
SHI Dong-ya, REN Wei-chao, WANG Jin, ZHANG Jie, Jane Ifunanya MBADIANYA, MAO Xue-wei, CHEN Chang-jun
2021, 20 (8): 2156-2169.   DOI: 10.1016/S2095-3119(20)63339-1
Abstract154)      PDF in ScienceDirect      
Nutrient and stress factor 1 (Nsf1), a transcription factor containing the classical Cys2-His2 (C2H2) zinc finger motif, is expressed under non-fermentable carbon conditions and in response to salt stress in Saccharomyces cerevisiae.  However, the role of Nsf1 in filamentous fungi is not well understood.  In this study, the orthologue of Nsf1 was investigated in Fusarium graminearum (named FgNsf1), a causal agent of Fusarium head blight (FHB).  The functions of FgNsf1 were evaluated by constructing a FgNSF1 deletion mutant, designated as ΔFgNsf1, and its functional complementation mutant ΔFgNsf1-C.  Gene deletion experiments showed that the mycelial growth rate, asexual and sexual reproduction of ΔFgNsf1 were significantly reduced, but the pigment production of ΔFgNsf1 was remarkably increased compared with the PH-1 and ΔFgNsf1-C.  In addition, the tolerance of ΔFgNsf1 to osmotic pressures, cell wall-damaging agents and oxidative stress increased significantly.  Sensitivity tests to different fungicides revealed that ΔFgNsf1 exhibited increased sensitivity to carbendazim (MBC) and tebuconazole, and enhanced tolerance to fludioxonil and iprodione than PH-1 and ΔFgNsf1-C.  The virulence of ΔFgNsf1 to wheat coleoptiles and flowering wheat heads were dramatically decreased, which was consistent with the decrease in the yield of deoxynivalenol (DON).  All of these defects were restored by target gene complementation.  These results indicated that FgNsf1 plays a crucial role in vegetative growth, asexual and sexual reproduction, stress responses, fungicide sensitivity, and full virulence in F. graminearum.
Reference | Related Articles | Metrics