Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Development and application of KASP marker for high throughput detection of the seedless trait in grapevine
WANG Fu-qiang, BIAN Lu, QIU Peng-peng, GUO Shuo, GUO Jing-han, GUO Chen-shuo, JIANG Jian-fu, LIU Chong-huai, WANG Yong, LIU Guo-tian, WANG Yue-jin, XU Yan
2023, 22 (11): 3269-3283.   DOI: 10.1016/j.jia.2023.10.014
Abstract207)      PDF in ScienceDirect      

Molecular marker-assisted selection (MAS) can significantly accelerate and improve the efficiency of the breeding process in seedless grape cultivars.  In this study, we developed the KASP_VviAGL11 and VviAGL11_410 markers based on a single nucleotide polymorphism (SNP) site (Chr18: 26889437 (A/C)) of the VviAGL11 gene, and compared them with previously reported SSR markers p3_VvAGL11 and 5U_VviAGL11 by testing 101 cultivars and 81 F1 hybrid progenies.  The results showed that both of the proposed markers obtained 100% accuracy rates in detecting allele A, which was closely associated with the seedless trait in grapes, while p3_VvAGL11 and 5U_VviAGL11 had lower accuracy rates due to their tendency to produce false positives.  After careful evaluation of the technical advantages and disadvantages associated with these markers, we concluded that KASP_VviAGL11 was superior in terms of simplicity, cost-effectiveness, efficiency, and accuracy.  Thus, we optimized the process of molecular MAS for seedless grapes, focusing on the KASP_VviAGL11 marker as a central component, to provide key technical support for the development of new seedless grape cultivars.

Reference | Related Articles | Metrics
Identification of the DEAD-box RNA helicase family members in grapevine reveals that VviDEADRH25a confers tolerance to drought stress
YANG Sheng-di, GUO Da-long, PEI Mao-song, WEI Tong-lu, LIU Hai-nan, BIAN Lu, YU Ke-ke, ZHANG Guo-hai, YU Yi-he
2022, 21 (5): 1357-1374.   DOI: 10.1016/S2095-3119(21)63870-4
Abstract187)      PDF in ScienceDirect      
Grapevine growing areas are increasingly affected by drought, which has greatly limited global wine production and quality.  DEAD-box is one of the largest subfamilies of the RNA helicase family, and its members play key roles in the growth and development of plants and their stress responses.  Previous studies have shown the potential of DEAD-box genes in the drought stress responses of Arabidopsis and tomato, rice, and other crop species.  However, information about DEAD-box genes in grapevine remains limited.  In this report, a total of 40 DEAD-box genes were identified in grapevine and their protein sequence characteristics and gene structures were analyzed.  By comparing the expression profiles of VviDEADRHs in response to drought stress in different grapevine varieties, nine candidate genes (VviDEADRH10c, -13, -22, -25a, -25b, -33, -34, -36, and -39) were screened based on expression profiling data.  Combined with qRT-PCR results, VviDEADRH25a was selected for functional verification.  Heterologous overexpression of VviDEADRH25a in Arabidopsis showed the transgenic plants were more sensitive to drought stress than the control.  Both electrolyte permeability and malondialdehyde content were significantly increased in transgenic plants, whereas the chlorophyll content and superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) enzyme activities were significantly decreased.  Furthermore, VviDEADRH25a-overexpressing plants showed down-regulated expression levels of several drought stress-related marker genes, namely AtCOR15a, AtRD29A, AtERD15, and AtP5CS1, which indicated that they participated in the drought stress response.  In summary, this study provides new insights into the structure, evolution, and participation of DEAD-box RNA helicase genes in the response to drought stress in grapevines.

Reference | Related Articles | Metrics