类胡萝卜素是人类饮食的重要组成部分,水果是类胡萝卜素的主要来源。水果中类胡萝卜素的合成和调节对水果品质的形成非常重要。在中国,草莓是冬季种植的主要时令水果之一。先前的研究表明,光对草莓中花青素、糖和多酚的代谢有很大影响。然而,我们对光如何调节草莓中类胡萝卜素代谢的机理还知之甚少。在本研究中,我们研究了蓝光、红光、黄绿光和白光对草莓中类胡萝卜素代谢的影响。我们的研究表明蓝光处理促进了草莓中叶黄素等多种类胡萝卜素的合成。转录组测序数据显示,蓝光处理促进了草莓中番茄红素ε-环化酶(FaLCYE)编码基因的表达。在草莓果实中瞬时过量表达FaLCYE可促进叶黄素在草莓中的积累。综上,我们的研究结果表明蓝光可以通过诱导FaLCYE的表达从而促进草莓中叶黄素的合成。
建立一种同时鉴别诊断猪瘟病毒(classical swine fever virus, CSFV)、非洲猪瘟病毒(African swine fever virus, ASF)和猪非典型瘟病毒(atypical porcine pestivirus, APPV)的快速、灵敏、有效的检测方法。依据GenBank中登录的CSFV (5¢ UTR)、ASFV (B646L) 和 APPV (5¢ UTR) 的高度保守基因序列分别设计和优化了多对特异性引物和Taq-man探针,以保守区基因序列分别制备三种阳性质粒,用矩阵法优化单重/多重荧光PCR的反应体系和条件,为避免荧光通道的交叉干扰多重荧光PCR扩增,结合所标记的荧光报告基团做颜色补偿试验,构建标准曲线的扩增图和对应的线性方程,并进行特异性、敏感性、重复性、符合性以及临床样本的检测等试验。三种病毒的标准曲线相关系数均达到0.995以上,具有良好的线性关系;与其它常见猪病无交叉扩增反应,具有很好的特异性;多重荧光PCR的最低检测量均为1 copy/mL,具有较高的敏感性;组内和组间的变异系数均小于1%,具有很好的重复性。该方法与CSF的国标(GB/T 27540-2011), ASF的国标 (GB/T 18648-2020),APPV的发明专利 (CN108611442A)检测样本盘的22个毒株样本符合率为100%。本研究建立的多重荧光PCR检测方法具有快速、高效、通量高、特异性好、灵敏度高等特点,可以对CSFV、ASFV和APPV病毒进行鉴别检测,为动物疫病的流行病学调查、疫情的检测提供一种新型的检测手段。本研究结合荧光PCR仪不同荧光通道设计CSFV、ASFV和APPV探针荧光信号强度较高且干扰较小的FAM、CY5和HEX报告基团,建立多重荧光PCR检测方法,用于同时鉴别诊断3种主要猪病毒的检测方法,在临床诊断中具有重要的应用价值。
剪接因子Prp6是剪接三聚体U4/U6.U5中的关键蛋白,在人类细胞和裂殖酵母中,它也是调控前体mRNA剪接的激酶Prp4的底物。前期研究发现引起小麦赤霉病的禾谷镰孢菌FgPrp6蛋白序列的自发突变(角突变)可以部分恢复Fgprp4突变体的表型。禾谷镰孢菌FgPrp4激酶调控剪接效率,其敲除突变体生长缓慢且丧失产孢、有性生殖和致病能力。为了进一步探索FgPrp6与激酶FgPrp4的关系,本研究通过对随机收集的240株Fgprp4角突变子的FgPRP6基因进行PCR产物测序,鉴定了20个角变子中的12个突变。其中3个突变位点在FgPrp6蛋白的N端结构域和HAT重复结构域的连接处,7个突变位点位于前两个HAT重复区域。对角变子的转录组数据分析结果表明FgPrp6上不同位置的角突变对Fgprp4突变体前体mRNA剪接缺陷的恢复程度不同。通过在野生型菌株中转入FgPrp6E308K-GFP载体或在内源FgPrp6上原位引入R230H突变,同时敲除FgPRP4的方法证实FgPrp6上的E308K或R230H都可以抑制Fgprp4。本研究利用co-IP和BiFc的方法证明禾谷镰孢菌的FgPrp6和激酶FgPrp4可以在体内互作,并进一步利用磷酸化抗体检测体内FgPrp6磷酸化水平的方法实验证明FgPrp6为FgPrp4的底物。通过将FgPrp6上保守的Prp4磷酸化位点和预测的磷酸化位点突变为A的方法验证这些位点的功能,结果表明T261,T219&T221和T199&T200对FgPrp6在菌落生长和有性生殖中的功能无关紧要,但是对其在侵染植物阶段的功能至关重要。扫描电镜和共聚焦显微镜观察发现它们主要在禾谷镰孢菌侵染生长,如侵染垫的形成和在植物细胞间的扩展中发挥作用。通过对野生型禾谷镰孢菌、Fgprp6/FgPRP6Δ199-221-GFP或Fgprp6/FgPRP6Δ250-262-GFP侵染三天的小麦麸片的转录组数据分析禾谷镰孢菌的前体mRNA剪接缺陷发现Fgprp6/FgPRP6Δ199-221-GFP和Fgprp6/FgPRP6Δ250-262-GFP菌株中各有28%和35%的内含子剪接具有缺陷,推测这种剪接缺陷是突变体侵染生长缺陷的原因。该研究为将来进一步解析禾谷镰孢菌前体mRNA剪接调控及剪接与致病性的关系奠定了基础。