期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 氮效应和代谢组学联合揭示玉米对氮胁迫的响应机制和氮肥减施的潜力
LU Yan-li, SONG Gui-pei, WANG Yu-hong, WANG Luo-bin, XU Meng-ze, ZHOU Li-ping, WANG Lei
Journal of Integrative Agriculture    2023, 22 (9): 2660-2672.   DOI: 10.1016/j.jia.2023.03.002
摘要217)      PDF    收藏

不同氮(N)水平下玉米的生理和代谢差异是田间合理氮素营养管理的基础,对提高氮肥利用率和减少环境污染具有重要作用。本文在明确长期不同氮肥处理下玉米氮效率和产量响应的前提下,利用非靶代谢组学方法分析了相应的差异代谢物及其代谢途径的差异。结果表明,氮胁迫(包括缺乏和过量),通过调节碳代谢产物(包括糖醇和TCA循环中间体)和氮代谢产物(包含各种氨基酸及其衍生物)影响碳氮代谢的平衡。缺氮胁迫时,L-丙氨酸、L-苯丙氨酸、L-组氨酸和L-谷氨酰胺显著下调,而过量氮时,L-缬氨酸、脯氨酸和L-组氨酸显著上调。除了上述碳氮代谢中的糖醇和氨基酸外,在该实验条件下,一些次生代谢物如黄酮类化合物(包括山奈酚、木犀草素、芸香素和香叶木素)和激素类(包括吲哚乙酸、反式玉米素和茉莉酸)可以初步被筛选作为氮胁迫诊断的指标。本研究还表明,N2处理120 kg·ha-1 N)和N3处理180 kg·ha-1 N)的叶片代谢水平相似,这与12年试验中两处理之间生理指标和产量的变化趋势一致。本研究在代谢水平上验证了氮肥减施即施用量从180 kg·ha-1(当地推荐)减少到120 kg·ha-1的可行性,为不降低产量条件下减少氮肥施用,进而提高氮肥利用率和保护生态环境提供了理论基础。

参考文献 | 相关文章 | 多维度评价
2. 旱地作物对气候变化响应及春玉米抗旱适水种植技术
FAN Ting-lu, LI Shang-zhong, ZHAO Gang, WANG Shu-ying, ZHANG Jian-jun, WANG Lei, DANG Yi, CHENG Wan-li
Journal of Integrative Agriculture    2023, 22 (7): 2067-2079.   DOI: 10.1016/j.jia.2022.08.044
摘要226)      PDF    收藏

气候变化对农业产生了重大影响。但大多数研究基于历史气象数据的分析,缺乏与作物生长发育和土壤水分相关联的长期监测。本研究收集了甘肃省农业科学院镇原试验站1957-2020年气象数据和1981-2019年作物生育期数据,并在陇东和宁南开展了相关田间长期试验。研究结果表明,60年来,每10年平均气温增加0.36°C和降水减少11.2mm1981-2019年的39年间旱地冬小麦田间耗水量平均362.1mm,呈现出每10年减少22.1mm的趋势,但1985-2019年的35年间春玉米耗水量平均405.5mm,保持基本稳定。气候干暖化导致旱地作物生育期发生了明显变化,每10年冬小麦和春玉米生育期缩短5.19天和6.47天,播前推迟3.56天和1.8天,成熟期提前1.76天和5.51天。全膜双垄沟集雨种植使小雨量在垄沟集雨效率达到65.7-92.7%,水分向土壤深层入渗,作物根域水分成倍增加,作物水分满足率提高110-160%,连续15年全膜双垄沟较半膜平作覆盖旱地玉米增产19.87%。旱地玉米群体大小是影响产量和水分利用效率的关键因素,种植密度从3000提高到4500/亩,玉米产量和水分利用效率增加20.6%17.4%,从4500提高到6000/亩再增加12.0%12.7%。然而,不同降水量地区旱地玉米产量与种植密度均呈现二次曲线关系,曲线性状、最高产量对应的最大密度在地区之间差异很大。在300-500mm年降水量地区,种植密度随降水量的增加而增加,适水种植密度为每1mm降水可种植玉米12/亩,但超过500mm时种植密度随降水量变化不大。因此,旱地农田抗旱节水应集中在压夏扩秋适水型种植结构建立、垄沟覆盖集雨种植、以水定密适水种植等,以减少气候变化引起的负面影响,增强旱地玉米生产的可持续。

参考文献 | 相关文章 | 多维度评价
3. 联苯菊酯和四氟甲醚菊酯对红火蚁的毒力、水平传递毒性及其触杀性粉剂的田间防效
LIANG Ming-rong, SHUANG You-ming, DENG Jie-fu, PENG Li-ya, ZHANG Sen-quan, ZHANG Chen, XU Yi-juan, LU Yong-yue, WANG Lei
Journal of Integrative Agriculture    2023, 22 (5): 1465-1476.   DOI: 10.1016/j.jia.2022.12.010
摘要323)      PDF    收藏

红火蚁Solenopsis invicta是一种严重威胁入侵地生物多样性、农林业生产和公共安全的危险性害虫。目前,红火蚁的防治药剂主要分为毒饵和触杀性粉剂两种类型。毒饵对红火蚁的防控效果虽然较彻底,但是见效慢,一般2周左右才能达到理想的防效。触杀性粉剂见效快,施药后3-5天即可达到理想效果,适合应用于红火蚁的紧急扑灭。为筛选出更多可用作触杀性粉剂的有效成分,本文开展了联苯菊酯和四氟甲醚菊酯对红火蚁的毒力、水平传递毒性及其触杀性粉剂的田间防效研究。研究显示,联苯菊酯和四氟甲醚菊酯对红火蚁工蚁的致死中量LD50分别为3.40 ng/头和1.57 ng/头。20 μg mL-1联苯菊酯对红火蚁工蚁的击倒中时KT5095%击倒时间KT95分别为7.179 min和16.611 min。20 μg mL-1四氟甲醚菊酯对红火蚁工蚁的击倒中时KT5095%击倒时间KT95分别为1.538 min和2.825 min联苯菊酯触杀性粉剂和四氟甲醚菊酯触杀性粉剂在蚁群间具有良好的水平传递毒性。0.25、0.50 和1.00% 联苯菊酯触杀性粉剂处理48小时后,第一次继发传递毒性的受药蚁的死亡率(二级死亡率)和第二次继发传递毒性的受药蚁的死亡率(三级死亡率)均超过了80%。0.25、0.50 和1.00% 四氟甲醚菊酯触杀性粉剂处理48小时后,第一次继发传递毒性的受药蚁的死亡率超过了99%,但是第二次继发传递毒性的受药蚁的死亡率则低于20%。野外结果显示,1.00%联苯菊酯触杀性粉剂和1.00%四氟甲醚菊酯触杀性粉剂处理14天后,对红火蚁蚁群的综合防效分别为95.87%85.70%,防治效果较好。

参考文献 | 相关文章 | 多维度评价
4. 确定华北地区典型的冬小麦-夏玉米轮作体系中的磷平衡阈值以优化磷投入和调节土壤磷有效性
XU Meng-ze, WANG Yu-hong, NIE Cai-e, SONG Gui-pei, XIN Su-ning, LU Yan-li, BAI You-lu, ZHANG Yin-jie, WANG Lei
Journal of Integrative Agriculture    2023, 22 (12): 3769-3782.   DOI: 10.1016/j.jia.2023.05.030
摘要156)      PDF    收藏

磷(P)是一种不可再生资源,是植物生长的关键营养元素,对作物产量提高起着重要作用。磷肥过量施用在农业生产中很普遍,这不仅浪费了磷资源,还造成了磷的积累和地下水污染。为了获得产量和磷利用效率(PUE我们假设农业系统的表观磷平衡可以作为确定磷投入阈值的关键指标。因此我们进行了长达12年的定位田间试验,包括6个施磷处理,量分别为04590135180225 kg P2O5 ha–1,以明确作物产量、PUE和土壤Olsen-P平衡的反应并优化投入。结果表明,肥施用量超过某一水平时,年产量不再增加当周年磷肥施用量为90–135 kg P2O5 ha–1时可以实现产量和PUE。当磷平衡阈值2.15–4.45 kg P ha–1时可以实现最佳产量和最小环境风险。基于磷平衡阈值投入为95.7–101 kg P2O5 ha–1施磷量在此阈值内时可以协同提高产量与PUE90.0–94.9%此外,本研究发现磷投入-产出平衡框架的建立有助于评估土壤Olsen-P在未来变化,其中土壤磷平衡每增加100 kg P ha–1,有效磷含量上升4.07 mg kg–1平衡可以作为农业生产管理的一个重要指标,为限制过剩和制定更高产、高效和环保的肥管理策略提供有力参考。

参考文献 | 相关文章 | 多维度评价
5. JIA-2021-0700 密植条件下玉米花丝生长减缓的表型及转录组学证据
ZHANG Min, XING Li-juan, REN Xiao-tian, ZOU Jun-jie, SONG Fu-peng, WANG Lei, XU Miao-yun
Journal of Integrative Agriculture    2022, 21 (11): 3148-3157.   DOI: 10.1016/j.jia.2022.08.083
摘要350)      PDF    收藏
增加种植密度是提高玉米产量的有效手段,但密植会加重雌穗顶端籽粒败育引发秃尖,进而导致减产。前期已有报道,对干旱逆境下玉米雌穗顶端籽粒败育的调控机制进行了研究,但对密植条件下玉米雌穗发生秃尖的调控机制知之甚少。本研究旨在探讨玉米应答密植环境、导致籽粒败育的潜在机制。选用两个自交系郑58和PH4CV,及分别由郑58和PH4CV做母本和父本组配的两个生产常用杂交种郑单958和先玉335为研究对象,观察了4个材料在四种不同种植密度(60,000 株/公顷 (60 k)、90,000株/公顷 (90 k)、120,000株/公顷 (120 k) 和 150,000株/公顷 (150 k)条件下,株型、秃尖情况、开花时间和花丝发育等表型的变化趋势。结果表明,随着种植密度增加,株高变化不明显,但茎粗、叶绿素含量和生物量的变化则呈现明显负相关。同时,散粉-吐丝期(ASI)延长,且苞叶中吐出花丝的数量也随之减少,说明密植条件下花丝生长减缓。进一步对花丝细胞形态的观察也发现,随着种植密度的增加,花丝细胞呈现减小趋势。转录组学数据分析表明,差异表达基因主要是花丝伸长相关基因,而非与碳代谢相关基因。以上研究证实,密植影响玉米花丝生长、使吐丝延迟、ASI加长,进而引起花期不遇,导致顶端胚珠授粉不良发生败育而产生秃尖表型。该研究加深了对密植条件下玉米花丝生长规律的认识,为进一步解析玉米应答密植条件,调控花丝生长的分子机制提供理论依据。
参考文献 | 相关文章 | 多维度评价
6. Transcriptome analysis for understanding the mechanism of dark septate endophyte S16 in promoting the growth and nitrate uptake of sweet cherry
WU Fan-lin, QU De-hui, TIAN Wei, WANG Meng-yun, CHEN Fei-yan, LI Ke-ke, SUN Ya-dong, SU Ying-hua, YANG Li-na, SU Hong-yan, WANG Lei
Journal of Integrative Agriculture    2021, 20 (7): 1819-1831.   DOI: 10.1016/S2095-3119(20)63355-X
摘要169)      PDF    收藏

甜樱桃是世界最受欢迎的水果之一。早先,我们发现了一种黑色暗格真菌S16,它能够促进樱桃砧木吉塞拉5号的生长。然而,关于它们之间作用的分子机制还不甚了解。在本次研究中,我们分析了与S16共生的樱桃根部的生理指标以及转录组本,初步阐释了S16促樱桃生长的分子机制。与S16共生后,樱桃幼苗的活力更强。而且,与对照相比,S16共生根部共鉴定到4249个差异表达基因。这些基因涉及到与植物代谢、激素相关的生长过程。而且,与氮调控相关的基因高度富集。生理指标测定表明,S16能够促进樱桃幼苗利用NO3-转运蛋白来吸收氮源。因此,此次RNA测序数据库可以更加深入了从分子机制层面解析黑色暗格真菌促樱桃的生长过程。


参考文献 | 相关文章 | 多维度评价
7. Functional analysis of the nitrogen metabolism-related gene CsGS1 in cucumber
XIN Ming, QIN Zhi-wei, YANG Jing, ZHOU Xiu-yan, WANG Lei
Journal of Integrative Agriculture    2021, 20 (6): 1515-1524.   DOI: 10.1016/S2095-3119(20)63305-6
摘要128)      PDF    收藏

本研究深入分析了在不同氮依赖黄瓜品种的叶片中CsGS1相对表达模式,并对CsGS1蛋白进行亚细胞定位。结果表明,低氮依赖品种D0328在叶片中特异性地高表达CsGS1,而高氮依赖品种D0422的叶片、茎和根中CsGS1的表达量没有明显差异。GS1蛋白定位于细胞质上,为细胞质蛋白。进一步将CsGS1转化到两个黄瓜品种D0328和D0422中,过量表达CsGS1可显著提高黄瓜植株的光合参数、植株鲜重、株高、根长、叶绿素b含量、植株总氮量以及GS活性等指标,反义表达CsGS1使这些指标水平显著降低。黄瓜CsGS1能够响应低氮胁迫,提高黄瓜植株对低氮的耐受性,因此CsGS1的高效表达可以作为提高黄瓜氮素利用效率的潜在育种目标。


参考文献 | 相关文章 | 多维度评价
8. Differentially expressed miRNAs in anthers may contribute to the fertility of a novel Brassica napus genic male sterile line CN12A
Dong Yun, Wang Yi, Jin Feng-wei, Xing Li-juan, Fang Yan, Zhang Zheng-ying, ZOU Jun-jie, Wang Lei, Xu Miao-yun
Journal of Integrative Agriculture    2020, 19 (7): 1731-1742.   DOI: 10.1016/S2095-3119(19)62780-2
摘要95)      PDF    收藏
In Brassica napus L. (rapeseed), complete genic male sterility (GMS) plays an important role in the utilization of heterosis.  Although microRNAs (miRNAs) play essential regulatory roles during bud development, knowledge of how GMS is regulated by miRNAs in rapeseed is rather limited.  In this study, we obtained a novel recessive GMS system, CN12AB.  The sterile line CN12A has defects in tapetal differentiation and degradation.  Illumina sequencing was employed to examine the expression of miRNAs in the buds of CN12A and the fertile line CN12B.  We identified 85 known miRNAs and 120 novel miRNAs that were expressed during rapeseed anther development.  When comparing the expression levels of miRNAs between CN12A and CN12B, 19 and 18 known miRNAs were found to be differentially expressed in 0.5–1.0 mm buds and in 2.5–3.0 mm buds, respectively.  Among these, the expression levels of 14 miRNAs were higher and the levels of 23 miRNAs were lower in CN12A compared with CN12B.  The predicted target genes of these differentially expressed miRNAs encode protein kinases, F-box domain-containing proteins, MADS-box family proteins, SBP-box gene family members, HD-ZIP proteins, floral homeotic protein APETALA 2 (AP2), and nuclear factor Y, subunit A.  These targets have previously been reported to be involved in pollen development and male sterility, suggesting that miRNAs might act as regulators of GMS in rapeseed anthers.  Furthermore, RT-qPCR data suggest that one of the differentially expressed miRNAs, bna-miR159, plays a role in tapetal differentiation by regulating the expression of transcription factor BnMYB101 and participates in tapetal degradation and influences callose degradation by manipulating the expression of BnA6.  These findings contribute to our understanding of the roles of miRNAs during anther development and the occurrence of GMS in rapeseed.
 
参考文献 | 相关文章 | 多维度评价
9.
One-time fertilization at first flowering improves lint yield and dry matter partitioning in late planted short-season cotton
LUO Hong-hai, WANG Qiang, ZHANG Jie-kun, WANG Lei-shan, LI Ya-bing, YANG Guo-zheng
Journal of Integrative Agriculture    2020, 19 (2): 509-517.   DOI: 10.1016/S2095-3119(19)62623-7
摘要132)      PDF    收藏
Cotton producers have substantially reduced their inputs (labor, nutrients, and management) mainly by adopting a short-season cropping management that is characterized by late sowing, high density, and reduced fertilization with one-time application at the first bloom stage without lint yield reduction.  However, it has been hypothesized that one-time fertilization at an earlier growth stage could be a more effective and economic management practice.  A two-year field experiment was conducted by applying five fertilizer one-time fertilization at 0 (FT1), 5 (FT2), 10 (FT3), 15 (FT4), and 20 (FT5) days after the first flower appeared in the field and one three-split fertilizer application taken as the conventional control (FT6), making six treatments altogether.  Cotton growth period, biomass accumulation, yield, and its formation were quantified.  The results showed that the one-time fertilization did not affect the cotton growth progress as compared to FT6, however, the total crop cycles for FT3–FT5 were 3 days shorter.  FT1 produced the highest cotton lint yield (1 396 kg ha–1), which was similar to the FT6 but higher than the other treatments, and could be attributed to more bolls per unit area and higher lint percentage. Cotton yield was positively correlated with cotton plant biomass accumulated.  FT1 had both the highest average (VT) (193.7 kg ha–1 d–1) and the highest maximum (VM) (220.9 kg ha–1 d–1) rates during the fast biomass accumulation period.  These results suggest that one-time fertilizer application at the first flower stage might be an adjustment that is more effective than at first bloom, and allowed for easier decision making for application date due to non counting of plants with flowers is needed.
 
参考文献 | 相关文章 | 多维度评价
10. Impact of the red imported fire ant Solenopsis invicta Buren on biodiversity in South China: A review
WANG Lei, XU Yi-juan, ZENG Ling, LU Yong-yue
Journal of Integrative Agriculture    2019, 18 (4): 788-796.   DOI: 10.1016/S2095-3119(18)62014-3
摘要262)      PDF(pc) (746KB)(269)    收藏
The red imported fire ant, Solenopsis invicta, is a problematic invasive species in China since at least 2003.  Over the past 15 years, a numerous studies were published on the impacts of this species on flora, fauna, and ecosystem function in natural and agricultural systems.  We reviewed the literature on S. invicta invasion biology and impacts on biodiversity in South China.  Both monogyne and polygyne colonies of S. invicta were introduced to China and polygyne colony is the dominant type.  The range expansion rate of S. invicta may reach 26.5–48.1 km yr–1 in China. S. invicta forage activities occur year-round, peaking in the summer and fall in South China and show a preference for insects and plant seeds.  We describe the ecological impacts of S. invicta on various habitats in South China, including arthropod community structure disruption and decreases in diversity and abundance of native ant species.  S. invicta can replace the role of native ants in mutualisms between ants and honeydew-producing Hemiptera, which results in loss of important food resources for native ants and natural enemies of hemipterans.  Further research is required to assess the complex ecosystem-level impacts of S. invicta in introduced areas. 
参考文献 | 相关文章 | 多维度评价
11. Invasion, expansion, and control of Bactrocera dorsalis (Hendel) in China
LIU Huan, ZHANG Dong-ju, XU Yi-juan, WANG Lei, CHENG Dai-feng, QI Yi-xiang, ZENG Ling, LU Yong-yue
Journal of Integrative Agriculture    2019, 18 (4): 771-787.   DOI: 10.1016/S2095-3119(18)62015-5
摘要355)      PDF(pc) (818KB)(287)    收藏
The Oriental fruit fly, Bactrocera dorsalis (Hendel), is among the most destructive fruit/vegetable-eating agricultural pests in the world, particularly in Asian countries such as China.  Because of its widespread distribution, invasive ability, pest status, and economic losses to fruit and vegetable crops, this insect species is viewed as an organism warranting severe quarantine restrictions by many countries in the world.  To understand the characteristics and potential for expansion of this pest, this article assembled current knowledge on the occurrence and comprehensive control of the Oriental fruit fly in China concerning the following key aspects: invasion and expansion process, biological and ecological characteristics, dynamic monitoring, chemical ecology, function of symbionts, mechanism of insecticide resistance, control index, and comprehensive control and countermeasures.  Some suggestions for the further control and study of this pest are also proposed.
参考文献 | 相关文章 | 多维度评价
12. Maize ABP2 enhances tolerance to drought and salt stress in transgenic Arabidopsis
ZONG Na, LI Xing-juan, WANG Lei, WANG Ying, WEN Hong-tao, LI Ling, ZHANG Xia, FAN Yun-liu, ZHAO Jun
Journal of Integrative Agriculture    2018, 17 (11): 2379-2393.   DOI: 10.1016/S2095-3119(18)61947-1
摘要375)      PDF(pc) (35768KB)(362)    收藏
Abiotic stresses, especially drought and salt, severely affect maize production, which is one of the most important cereal crops in the world.  Breeding stress-tolerant maize through biotechnology is urgently needed to maintain maize production.  Therefore, it is important to identify new genes that can enhance both drought and salt stress tolerance for molecular breeding. In this study, we identified a maize ABA (abscisic acid)-responsive element (ABRE) binding protein from a 17-day post-pollination (dpp) maize embryo cDNA library by yeast one-hybrid screen using the ABRE2 sequence of the maize Cat1 gene as bait.  This protein, designated, ABRE binding protein 2 (ABP2), belongs to the bZIP transcription factor family.  Endogenous expression of ABP2 in maize can be detected in different tissues at various development stages, and can be induced by drought, salt, reactive oxygen species (ROS)-generating agents, and ABA treatment.  Constitutive expression of ABP2 in transgenic Arabidopsis plants enhanced tolerance to drought and salt stress, and increased sensitivity to ABA.  In exploring the mechanism by which ABP2 can stimulate abiotic stress tolerance, we found that ROS levels were reduced and expression of stress-responsive and carbon metabolism-related genes was enhanced by constitutive ABP2 expression in transgenic plants.  In short, we identified a maize bZIP transcription factor which can enhance both drought and salt tolerance of plants.
 
参考文献 | 相关文章 | 多维度评价
13. Morphological and ISSR molecular markers reveal genetic diversity of wild hawthorns (Crataegus songorica K. Koch.) in Xinjiang, China
SHENG Fang, CHEN Shu-ying, TIAN Jia, LI Peng, QIN Xue, WANG Lei, LUO Shu-ping, LI Jiang
Journal of Integrative Agriculture    2017, 16 (11): 2482-2498.   DOI: 10.1016/S2095-3119(17)61688-5
摘要627)      PDF    收藏
The wild hawthorn species, Crataegus songorica K. Koch., is an important wild germplasm resource in Xinjiang, China that has been endangered in recent years.  The genetic diversity of C. songorica K. Koch. germplasm in five populations from Daxigou, Xinjiang, China were evaluated based on phenotypic traits and ISSR molecular markers to provide basic information on resource protection, rational utilization and genetic improvement.  The F-value for the phenotypic differentiation coefficient of the 33 traits measured ranged from 0.266 to 15.128, and mean value was 13.85%.  The variation among populations was found to be lower than that within population.  A total of 303 loci were detected within the five populations by 12 primers.  Within 298 polymorphic loci, the polymorphism was 98.35%, showing a high genetic diversity in C. songorica K. Koch.  The gene diversity within population, total population genetic diversity, genetic differentiation coefficient and gene flow were 0.2779, 0.3235, 0.1408, and 3.0511, respectively.  Our results showed that C. songorica K. Koch. from Xinjiang has a high level of genetic diversity at both the phenotypic and molecular levels.  Significant genetic differentiation existed within population and the differentiation trend showed a regional association.  And in this study, in situ and ex situ conservation approaches were raised for wild hawthorn protection utilization.
参考文献 | 相关文章 | 多维度评价
14. Accumulation characteristic of protein bodies in different regions of wheat endosperm under drought stress
CHEN Xin-yu, LI Bo, SHAO Shan-shan, WANG Lei-lei, ZHU Xiao-wei, YANG yang, WANG Wen-jun, YU Xu-run, XIONG Fei
Journal of Integrative Agriculture    2016, 15 (12): 2921-2930.   DOI: 10.1016/S2095-3119(16)61332-1
摘要1144)      PDF    收藏
    The structural characteristics of protein body accumulation in different endosperm regions of hard wheat cultivar (XM33) and soft wheat cultivar (NM13) under drought stress were investigated. Drought stress treatment was implemented from plant regreening to the caryopsis mature stage. Microscope images of endosperm cells were obtained using resin semi-thin slice technology to observe the distribution and relative area of protein body (PB). Compared with NM13, relative PB area of XM33 was significantly higher in sub-aleurone endosperm region. The amount of accumulation, including the size and relative area of PB, in two wheat cultivars was higher in sub-aleurone region than that in central region at 18 days post anthesis (DPA). Drought stress significantly enhanced the sizes and relative areas of PBs in the dorsal and abdominal endosperms in two wheat cultivars. Particularly for dorsal endosperm, drought stress enhanced the relative PB area at 18 DPA and NM13 (5.0% vs. 6.73%) showed less enhancement than XM33 (5.49% vs. 8.96%). However, NM13 (9.58% vs. 12.02%) showed greater enhancement than XM33 (10.25% vs. 11.7%) at 28 DPA. The protein content in the dorsal and abdominal endosperms of the two wheat cultivars decreased at 12 DPA and then increased until 38 DPA. Drought stress significantly increased the protein contents in the two main regions. From 12 to 38 DPA, the amount of PB accumulation and the protein content were higher in XM33 than those in NM13. The results revealed that PB distribution varied in different endosperm tissues and that the amount of PB accumulation was remarkably augmented by drought stress.
参考文献 | 相关文章 | 多维度评价
15. Impact of chilling accumulation and hydrogen cyanamide on floral organ development of sweet cherry in a warm region
WANG Lei, ZHANG Lu, MA Chao, XU Wen-ping, LIU Zong-rang, ZHANG Cai-xi, Whiting D. Matthew, WANG Shi-ping
Journal of Integrative Agriculture    2016, 15 (11): 2529-2538.   DOI: 10.1016/S2095-3119(16)61341-2
摘要1255)      PDF    收藏
      The microscopic investigation of the floral development of sweet cherry (Prunus avium L. cv. Hongdeng) from a warm winter climate (Shanghai) and cold winter climate (Tai’an, Shandong Province, China) was conducted to explore the reason of low fruit set. The effect of hydrogen cyanamide (HCN) on floral development under warm winter conditions was also investigated. Trees grown in Shanghai with insufficient chilling accumulation exhibited little difference in the progression of microspore development compared to trees in Tai’an that accumulated adequate chilling, but showed substantial delays in ovule and embryo sac development. The growth of nucelli did not proceed beyond the macrospore mother cell and macrospore stages with abortion rates of 13, 15 and 45% by 6, 3 and 0 d before full bloom, respectively. These abnormalities in the ovule and embryo sac in the Shanghai-grown trees were eliminated by HCN application. These results suggest that chilling regulates the development of female floral organs in winter dormancy; therefore, insufficient chilling accumulation, causing abnormality of the female floral organs, restricts the cultivation of sweet cherry in warm winter regions. Interestingly, HCN application, which decreased the chilling requirements for Hongdeng, may be a potential strategy for sweet cherry cultivation in warm winter regions.
参考文献 | 相关文章 | 多维度评价
16. Hyper-spectral characteristics and classification of farmland soil in northeast of China
LU Yan-li, BAI You-lu, YANG Li-ping, WANG Lei, WANG Yi-lun, NI Lu, ZHOU Li-ping
Journal of Integrative Agriculture    2015, 14 (12): 2521-2528.   DOI: 10.1016/S2095-3119(15)61232-1
摘要1325)      PDF    收藏
The physical and chemical heterogeneities of soils make the soil spectral different and complicated, and it is valuable to increase the accuracy of prediction models for soil organic matter (SOM) based on pre-classification. This experiment was conducted under a controllable environment, and different soil samples from northeast of China were measured using ASD2500 hyperspectral instrument. The results showed that there are different reflectances in different soil types. There are statistically significant correlation between SOM and reflectence at 0.05 and 0.01 levels in 550–850 nm, and all soil types get significant at 0.01 level in 650–750 nm. The results indicated that soil types of the northeast can be divided into three categories: The first category shows relatively flat and low reflectance in the entire band; the second shows that the spectral reflectance curve raises fastest in 460–610 nm band, the sharp increase in the slope, but uneven slope changes; the third category slowly uplifts in the visible band, and its slope in the visible band is obviously higher than the first category. Except for the classification by curve shapes of reflectance, principal component analysis is one more effective method to classify soil types. The first principal component includes 62.13–97.19% of spectral information and it mainly relates to the information in 560–600, 630–690 and 690–760 nm. The second mainly represents spectral information in 1 640–1 740, 2 050–2 120 and 2 200–2 300 nm. The samples with high OM are often in the left, and the others with low OM are in the right of the scatter plot (the first principal component is the horizontal axis and the second is the longitudinal axis). Soil types in northeast of China can be classified effectively by those two principles; it is also a valuable reference to other soil in other areas.
参考文献 | 相关文章 | 多维度评价
17. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation
BAI You-lu, WANG Lei, LU Yan-li, YANG Li-ping, ZHOU Li-ping, NI Lu, CHENG Ming-fang
Journal of Integrative Agriculture    2015, 14 (12): 2467-2476.   DOI: 10.1016/S2095-3119(15)61216-3
摘要1388)      PDF    收藏
The effect of long-term straw return on crop yield, soil potassium (K) content, soil organic matter, and crop response to K from both straw and chemical K fertilizer (K2SO4) were investigated in a fixed site field experiment for winter wheat-summer maize rotation in 6 years for 12 seasons. The field experiment was located in northern part of North China Plain with a sandy soil in relatively low yield potential. Two factors, straw return and chemical K fertilizer, were studied with two levels in each factor. Field split design was employed, with two straw treatments, full straw return of previous crop (St) and no straw return, in main plots, and two chemical K fertilizer treatments, 0 and 60 kg K2O ha–1, as sub-plots. The results showed that straw return significantly increased yields of winter wheat and summer maize by 16.5 and 13.2% in average, respectively, and the positive effect of straw return to crop yield showed more effective in lower yield season. Straw return significantly increased K absorption by the crops, with significant increase in straw part. In treatment with straw return, the K content in crop straw increased by 15.9 and 21.8% in wheat and maize, respectively, compared with no straw return treatment. But, straw return had little effect on K content in grain of the crops. Straw return had significant influences on total K uptake by wheat and maize plants, with an increase of 32.7 and 30.9%, respectively. There was a significant correlation between crop yield and K uptake by the plant. To produce 100 kg grain, the wheat and maize plants absorbed 3.26 and 2.24 kg K2O, respectively. The contents of soil available K and soil organic matter were significantly affected by the straw return with an increase of 6.07 and 23.0%, respectively, compared to no straw return treatment. K2SO4 application in rate of 60 kg K2O ha–1 showed no significant effect on wheat and maize yield, K content in crop straw, total K uptake by the crops, soil available K content, and soil organic matter. The apparent K utilization rate (percentage of applied K absorbed by the crop in the season) showed difference for wheat and maize with different K sources. In wheat season, the K utilization rate from K2SO4 was higher than that from straw, while in maize season, the K utilization rate from straw was higher than that from chemical fertilizer. In the whole wheat-maize rotation system, the K absorption efficiency by the two crops from straw was higher than that from K2SO4.
参考文献 | 相关文章 | 多维度评价
18. Effects of root restriction on nitrogen and gene expression levels in nitrogen metabolism in Jumeigui grapevines (Vitis vinifera L.×Vitis labrusca L.)
YU Xiu-ming, LI Jie-fa, ZHU Li-na, WANG Bo, WANG Lei, BAI Yang, ZHANG Cai-xi, XU Wen-ping, WANG Shi-ping
Journal of Integrative Agriculture    2015, 14 (1): 67-79.   DOI: 10.1016/S2095-3119(14)60876-5
摘要1805)      PDF    收藏
To decipher the relationship between the inhibited shoot growth and expression pattern of key enzymes in nitrogen metabolism under root restriction, the effects of root restriction on diurnal variation of expression of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS1-1, GS1-2, GS2) and glutamate synthase (Fd-GOGAT, NADH-GOGAT) genes and nitrogen levels were evaluated in two-year-old Jumeigui grapevines (Vitis vinifera L.×Vitis labrusca L.) when significant differences in shoot growth were observed between treatments at expansion stage (22 days after anthesis). Grapevines were planted in root-restricting pits as root restriction and in an unrestricted field as the control. Results showed that root restriction significantly reduced shoot growth, but promoted the growth of white roots and fibrous brown roots and improved the fruit quality. (NO3 –+NO2 –)-N concentration in all plant parts, NH4 +-N concentration in white roots and total N concentration in leaves and brown roots were significantly reduced under root restriction. Gene expression analysis revealed that mRNA levels of genes related to the GS1/NADH-GOGAT pathway were lower in root-restricted than in control petioles, whereas genes involved in the GS2/Fd-GOGAT pathway were up-regulated under root restriction. Root restriction also resulted in downregulation of genes involved in nitrogen metabolism in leaves, especially at 10:00, while transcript levels of all these genes were enhanced in root-restricted white and brown roots at most time points. This organ-dependent response contributed to the alteration in NO3 – reduction and NH4 + assimilation under root restriction, leading to less NO3 – transported from roots and then assimilated in root-restricted leaves. Therefore, this study implied that shoot growth inhibition in grapevines under root restriction is closely associated with down-regulation of gene expression in nitrogen metabolism in leaves.
参考文献 | 相关文章 | 多维度评价
19. Effects of Glutamate and Na+ on the Development and Enzyme Activity of the Oriental Migratory Locust, Locusta migratoria manilensis (Meyen) in Successive Generations
ZHAO Xia, JIA Miao, WANG Lei, CAO Guang-chun , ZHANG Ze-hua
Journal of Integrative Agriculture    2014, 13 (4): 819-826.   DOI: 10.1016/S2095-3119(13)60516-X
摘要1755)      PDF    收藏
Rapid and mass rearing of Locusta migratoria manilensis is an urgent need to meet the increasing demand for food of people. In this study, the effects of four artificial feeds on the development, reproduction and the activities of detoxification and protective enzymes of L. migratoria manilensis in three successive generations were investigated. The results showed that sucrose and monosodium glutamate (MSG) significantly increased the net reproductive rate (R0) and the intrinsic growth rate (rm) of L. migratoria manilensis, but sodium chloride (0.17%) suppressed this increase. Furthermore, the artificial feed with sucrose and monosodium glutamate increased the activities of esterase (EST), acetylcholinesterase (AChE), glutathione-Stransferase (GST), multi-function oxidase (MFO), phenol oxidase (PO), catalase (CAT) and peroxidase (POD), but inhibited the activity of superoxide dismutase (SOD). However, sodium chloride (0.17%) increased the activities of EST, AChE, CAT and SOD, and inhibited the activities of MFO, GST, PO and POD. Correlation analysis found that the increasing of PO activity and the decreasing of SOD activities were significantly related with the increasing of the intrinsic growth rate (rm). The above results indicated that sucrose and monosodium glutamate could promote the development and reproduction of L. migratoria manilensis, but Na+ inhibit such promotion with the concentration above 0.2%. The activities of PO and SOD can be used as biochemical standard to assess the effect of artificial feed.
参考文献 | 相关文章 | 多维度评价