| [1] |
USLU T. Advantages, risks and legal perspectives of GMOs in 2020s. Plant Biotechnology Reports, 2021, 15(6): 741-751.
|
| [2] |
ROMEIS J, MEISSLE M, BIGLER F. Early-tier tests insufficient for GMO risk assessment-Reply. Nature Biotechnology, 2007, 25(1): 36-37.
|
| [3] |
MARTINEZ-RIBAYA B, AREAL F J. Is there an opportunity for product differentiation between GM and non-GM soya-based products in Argentina? Food Control, 2020, 109: 106895.
|
| [4] |
AKIYAMA H, MAKIYAMA D, NAKAMURA K, SASAKI N, MINEGISHI Y, MANO J, KITTA K, OZEKI Y, TESHIMA R. A novel detection system for the genetically modified canola (Brassica rapa) line RT73. Analytical Chemistry, 2010, 82(23): 9909-9916.
|
| [5] |
张月秋, 傅芳奇, 张华, 陈一帆, 王晨尧, 蒋红叶, 李亚辉, 廖一尘, 王丹, 孙宇, 等. 转基因耐除草剂大豆LP012-1 转化体实时荧光定量PCR检测方法的研究. 生物技术进展, 2025, 15(2): 276-286.
|
|
ZHANG Y Q, FU F Q, ZHANG H, CHEN Y F, WANG C Y, JIANG H Y, LI Y H, LIAO Y C, WANG D, SUN Y, et al. Research of detection method for genetically modified herbicide-tolerant soyabean LP012-1 transformant by quantitative real-time PCR. Current Biotechnology, 2025, 15(2): 276-286. (in Chinese)
|
| [6] |
陆佳雨, 王沛然, 许学, 吴爽, 胡笑林, 李晨, 潘伟芹, 江雅婷, 汪秀峰. 转基因抗虫大豆转化体CAL16定性PCR检测方法. 生物安全学报(中英文), 2025, 34(2): 137-144.
|
|
LU J Y, WANG P R, XU X, WU S, HU X L, LI C, PAN W Q, JIANG Y T, WANG X F. Qualitative PCR detection method for transgenic insect-resistant soybean transformant CAL16. Journal of Biosafety, 2025, 34(2): 137-144. (in Chinese)
|
| [7] |
LAW J W, AB MUTALIB N S, CHAN K G, LEE L H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Frontiers in Microbiology, 2014, 5: 770.
|
| [8] |
NOTOMI T, OKAYAMA H, MASUBUCHI H, YONEKAWA T, WATANABE K, AMINO N, HASE T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 2000, 28(12): e63.
|
| [9] |
REID M S, LE X C, ZHANG H Q. Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: An EXPAR example. Angewandte Chemie, 2018, 57(37): 11856-11866.
|
| [10] |
WU X Y, CHEN S T, ZHANG Z X, ZHANG Y H, LI P M, CHEN X Y, LIU M M, LU Q, LI Z Y, WEI Z Y, et al. Development of recombinase polymerase amplification combined with lateral flow strips for rapid detection of cowpea mild mottle virus. The Plant Pathology Journal, 2023, 39(5): 486-493.
|
| [11] |
KIM S H, LEE S Y, KIM U, OH S W. Diverse methods of reducing and confirming false-positive results of loop-mediated isothermal amplification assays: A review. Analytica Chimica Acta, 2023, 1280: 341693.
|
| [12] |
ZHAO Y X, CHEN F, LI Q, WANG L H, FAN C H. Isothermal amplification of nucleic acids. Chemical Reviews, 2015, 115(22): 12491-12545.
|
| [13] |
AHMAD MUNAWAR M. Critical insight into recombinase polymerase amplification technology. Expert Review of Molecular Diagnostics, 2022, 22(7): 725-737.
|
| [14] |
DAHER R K, STEWART G, BOISSINOT M, BOUDREAU D K, BERGERON M G. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology. Molecular and Cellular Probes, 2015, 29(2): 116-121.
|
| [15] |
CHEN J S, MA E B, HARRINGTON L B, DA COSTA M, TIAN X R, PALEFSKY J M, DOUDNA J A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387): 436-439.
|
| [16] |
DING L, WANG X F, CHEN X Y, XU X L, WEI W, YANG L, JI Y, WU J, XU J F, PENG C. Development of a novel Cas13a/Cas12a- mediated ‘one-pot’ dual detection assay for genetically modified crops. Journal of Advanced Research, 2025, 72: 97-106.
|
| [17] |
MUKAMA O, WU J H, LI Z Y, LIANG Q X, YI Z J, LU X W, LIU Y J, LIU Y M, HUSSAIN M, MAKAFE G G, et al. An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids. Biosensors & Bioelectronics, 2020, 159: 112143.
|
| [18] |
MOKANY E, BONE S M, YOUNG P E, DOAN T B, TODD A V. MNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switches. Journal of the American Chemical Society, 2010, 132(3): 1051-1059.
|
| [19] |
YANG Y, SHI Y H, ZHANG X L, LI G L. MNAzyme catalyzed signal amplification-mediated lateral flow biosensor for portable and sensitive detection of mycotoxin in food samples. Analytical and Bioanalytical Chemistry, 2024, 416(4): 1057-1067.
|
| [20] |
STEPHEN W, SANTORO G F J. A general purpose RNA-cleaving DNA enzyme. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9): 4262-4266.
|
| [21] |
ZHOU Z X, BRENNAN J D, LI Y F. A multi-component all-DNA biosensing system controlled by a DNAzyme. Angewandte Chemie International Edition, 2020, 59(26): 10401-10405.
|
| [22] |
HANPANICH O, OYANAGI T, SHIMADA N, MARUYAMA A. Cationic copolymer-chaperoned DNAzyme sensor for microRNA detection. Biomaterials, 2019, 225: 119535.
|
| [23] |
YANG L, CHEN G W, WU J, WEI W, PENG C, DING L, CHEN X Y, XU X L, WANG X F, XU J F. A PAM-free one-step asymmetric RPA and CRISPR/Cas12b combined assay (OAR-CRISPR) for rapid and ultrasensitive DNA detection. Analytical Chemistry, 2024, 96(14): 5471-5477.
|
| [24] |
GAO Y, TANG J, ZHOU Q, YU Z C, WU D, TANG D P. Excited-state intramolecular proton transfer-driven photon-gating for photoelectrochemical sensing of CO-releasing molecule-3. Analytical Chemistry, 2024, 96(12): 5014-5021.
|
| [25] |
SUH S M, KIM H J, SHIN M K, HONG S J, CHA J E, KIM H Y. Multiplex PCR detection method of genetically modified canola event (MON94100, LBFLFK, and NS-B50027-4) combined with capillary electrophoresis. Food Science and Biotechnology, 2024, 33(3): 637-643.
|
| [26] |
YANG L T, YANG Y, JIN W J, ZHANG X J, LI X Y, WU Y H, LI J, LI L. Development and interlaboratories validation of event-specific quantitative real-time PCR method for genetically modified rice G6H1 event. Journal of Agricultural and Food Chemistry, 2018, 66(30): 8179-8186.
|
| [27] |
TAKABATAKE R, KAGIYA Y, MINEGISHI Y, YEASMIN S, FUTO S, NOGUCHI A, KONDO K, MANO J, KITTA K. Development and evaluation of rapid screening detection methods for genetically modified crops using loop-mediated isothermal amplification. Food Chemistry, 2018, 252: 390-396.
|
| [28] |
CHENG N, SHANG Y, XU Y C, ZHANG L, LUO Y B, HUANG K L, XU W T. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme- lateral flow biosensor. Biosensors and Bioelectronics, 2017, 91: 408-416.
|
| [29] |
JIANG X H, ZHANG H M, WU J, YANG X, SHAO J W, LU Y J, QIU B, LIN Z Y, CHEN G N. G-quadruplex DNA biosensor for sensitive visible detection of genetically modified food. Talanta, 2014, 128: 445-449.
|
| [30] |
XU C, LI L, JIN W J, WAN Y S. Recombinase polymerase amplification (RPA) of CaMV-35S promoter and nos Terminator for rapid detection of genetically modified crops. International Journal of Molecular Sciences, 2014, 15(10): 18197-18205.
|
| [31] |
LIU H, WANG J B, LI P, BAI L, JIA J W, PAN A H, CUI W D, TANG X M. Rapid detection of P-35S and T-nos in genetically modified organisms by recombinase polymerase amplification combined with a lateral flow strip. Food Control, 2020, 107: 106775.
|
| [32] |
GE H R, WANG X F, XU J F, LIN H, ZHOU H Q, HAO T T, WU Y B, GUO Z Y. A CRISPR/Cas12a-mediated dual-mode electrochemical biosensor for polymerase chain reaction-free detection of genetically modified soybean. Analytical Chemistry, 2021, 93(44): 14885-14891.
|
| [33] |
WANG J B, HU X W, WANG Y, ZENG H J, LIU X F, LIU H. Rapid detection of genetically modified products based on CRISPR-Cas12a combined with recombinase polymerase amplification. Current Research in Food Science, 2022, 5: 2281-2286.
|
| [34] |
LIU H, WANG J B, ZENG H J, LIU X F, JIANG W, WANG Y, OUYANG W B, TANG X M. RPA-Cas12a-FS: A frontline nucleic acid rapid detection system for food safety based on CRISPR-Cas12a combined with recombinase polymerase amplification. Food Chemistry, 2021, 334: 127608.
|
| [35] |
DONG S, ZHANG C Z, ZHANG X, LIU Y, ZHONG J F, XIE Y J, XU C X, DING Y, ZHANG L Q, LIU X J. Production and characterization of monoclonal antibody broadly recognizing Cry1 toxins by use of designed polypeptide as hapten. Analytical Chemistry, 2016, 88(14): 7023-7032.
|
| [36] |
WANG B L, JIAO Y L, LI X X, ZHENG F, LIANG H, SUN Z Y, GUO G. A universal method for directional cloning of PCR products based on asymmetric PCR. Biotechnology and Applied Biochemistry, 2009, 52(1): 41-44.
|
| [37] |
KOBER C, NIESSNER R, SEIDEL M. Quantification of viable and non-viable Legionella spp. by heterogeneous asymmetric recombinase polymerase amplification (HaRPA) on a flow-based chemiluminescence microarray. Biosensors & Bioelectronics, 2018, 100: 49-55.
|
| [38] |
ELSÄßER D, HO J, NIESSNER R, TIEHM A, SEIDEL M. Heterogeneous asymmetric recombinase polymerase amplification (HaRPA) for rapid hygiene control of large-volume water samples. Analytical Biochemistry, 2018, 546: 58-64.
|
| [39] |
YANG L, CHEN G W, BO Y M, PENG C, YAN J T, CHEN X Y, XU X L, WEI W, FANG X X, WU J, et al. An ultra-sensitive quarantine pathogen on-site detection based on a one-pot asymmetric recombinase polymerase amplification and MNAzyme-assisted target recycling biosensor (OAR-MNA). Plant Biotechnology Journal, 2025, 23 (12), 5387-5396.
|