[1] |
SANAN-MISHRA N, ABDUL KADER JAILANI A, MANDAL B, MUKHERJEE S K. Secondary siRNAs in plants: Biosynthesis, various functions, and applications in virology. Frontiers in Plant Science, 2021, 12: 610283.
|
[2] |
HAN M, PERKINS M H, NOVAES L S, XU T, CHANG H. Advances in transposable elements: from mechanisms to applications in mammalian genomics. Frontiers in Genetics, 2023, 14: 1290146.
|
[3] |
HAYWARD A, GILBERT C. Transposable elements. Current Biology, 2022, 32(17): R904-R909.
|
[4] |
MILLER J T, DONG F, JACKSON S A, SONG J, JIANG J. Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics, 1998, 150(4): 1615-1623.
doi: 10.1093/genetics/150.4.1615
pmid: 9832537
|
[5] |
ANANIEV E V, PHILLIPS R L, RINES H W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(22): 13073-13078.
|
[6] |
ZHONG C X, MARSHALL J B, TOPP C, MROCZEK R, KATO A, NAGAKI K, BIRCHLER J A, JIANG J M, DAWE R K. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. The Plant Cell, 2002, 14(11): 2825-2836.
|
[7] |
PIETZENUK B, MARKUS C, GAUBERT H, BAGWAN N, MEROTTO A, BUCHER E, PECINKA A. Recurrent evolution of heat-responsiveness in Brassicaceae COPIA elements. Genome Biology, 2016, 17(1): 209.
|
[8] |
ELLINGHAUS D, KURTZ S, WILLHOEFT U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics, 2008, 9: 18.
|
[9] |
VICIENT C M, CASACUBERTA J M. Impact of transposable elements on polyploid plant genomes. Annals of Botany, 2017, 120(2): 195-207.
doi: 10.1093/aob/mcx078
pmid: 28854566
|
[10] |
CAPY P. Classification and nomenclature of retrotransposable elements. Cytogenetic and Genome Research, 2005, 110(1/2/3/4): 457-461.
|
[11] |
LLORENS C, FUTAMI R, COVELLI L, DOMÍNGUEZ-ESCRIBÁ L, VIU J M, TAMARIT D, AGUILAR-RODRÍGUEZ J, VICENTE- RIPOLLES M, FUSTER G, BERNET G P, et al. The Gypsy Database (GyDB) of mobile genetic elements: Release 2.0. Nucleic Acids Research, 2011, 39(Database issue): D70-D74.
|
[12] |
NEUMANN P, NAVRÁTILOVÁ A, KOBLÍŽKOVÁ A, KEJNOVSKÝ E, HŘIBOVÁ E, HOBZA R, WIDMER A, DOLEŽEL J, MACAS J. Plant centromeric retrotransposons: A structural and cytogenetic perspective. Mobile DNA, 2011, 2(1): 4.
doi: 10.1186/1759-8753-2-4
pmid: 21371312
|
[13] |
ZHANG Y X, FAN C M, LI S S, CHEN Y H, WANG R R, ZHANG X Q, HAN F P, HU Z M. The diversity of sequence and chromosomal distribution of new transposable element-related segments in the rye genome revealed by FISH and lineage annotation. Frontiers in Plant Science, 2017, 8: 1706.
doi: 10.3389/fpls.2017.01706
pmid: 29046683
|
[14] |
NAISH M, ALONGE M, WLODZIMIERZ P, TOCK A J, ABRAMSON B W, SCHMÜCKER A, MANDÁKOVÁ T, JAMGE B, LAMBING C, KUO P, et al. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science, 2021, 374(6569): eabi7489.
|
[15] |
WLODZIMIERZ P, RABANAL F A, BURNS R, NAISH M, PRIMETIS E, SCOTT A, MANDÁKOVÁ T, GORRINGE N, TOCK A J, HOLLAND D, et al. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature, 2023, 618(7965): 557-565.
|
[16] |
周芳. 黄瓜着丝粒重复序列的组成与分布分析[D]. 南京: 南京农业大学, 2022.
|
|
ZHOU F. Composition and distribution of centromeric repeats in cucumber[D]. Nanjing: Nanjing Agricultural University, 2022. (in Chinese)
|
[17] |
HEUBERGER M, KOO D H, AHMED H I, TIWARI V K, ABROUK M, POLAND J, KRATTINGER S G, WICKER T. Evolution of Einkorn wheat centromeres is driven by the mutualistic interplay of two LTR retrotransposons. Mobile DNA, 2024, 15(1): 16.
doi: 10.1186/s13100-024-00326-9
pmid: 39103880
|
[18] |
SHARMA A, PRESTING G G. Centromeric retrotransposon lineages predate the maize/rice divergence and differ in abundance and activity. Molecular Genetics and Genomics, 2008, 279(2): 133-147.
doi: 10.1007/s00438-007-0302-5
pmid: 18000683
|
[19] |
NEUMANN P, YAN H H, JIANG J M. The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics, 2007, 176(2): 749-761.
doi: 10.1534/genetics.107.071902
pmid: 17409063
|
[20] |
NEUMANN P, NOVÁK P, HOŠTÁKOVÁ N, MACAS J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA, 2019, 10: 1.
doi: 10.1186/s13100-018-0144-1
pmid: 30622655
|
[21] |
SU H D, LIU Y L, LIU C, SHI Q H, HUANG Y H, HAN F P. Centromere satellite repeats have undergone rapid changes in polyploid wheat subgenomes. The Plant Cell, 2019, 31(9): 2035-2051.
doi: 10.1105/tpc.19.00133
pmid: 31311836
|
[22] |
ROQUIS D, ROBERTSON M, YU L, THIEME M, JULKOWSKA M, BUCHER E. Genomic impact of stress-induced transposable element mobility in Arabidopsis. Nucleic Acids Research, 2021, 49(18): 10431-10447.
|
[23] |
MILYAEVA P A, KUKUSHKINA I V, KIM A I, NEFEDOVA L N. Stress induced activation of LTR retrotransposons in the Drosophila melanogaster genome. Life, 2023, 13(12): 2272.
|
[24] |
International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): eaar7191.
|
[25] |
LING H Q, MA B, SHI X L, LIU H, DONG L L, SUN H, CAO Y H, GAO Q, ZHENG S S, LI Y, et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature, 2018, 557(7705): 424-428.
|
[26] |
MASCHER M, GUNDLACH H, HIMMELBACH A, BEIER S, TWARDZIOK S O, WICKER T, RADCHUK V, DOCKTER C, HEDLEY P E, RUSSELL J, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature, 2017, 544(7651): 427-433.
|
[27] |
LI G W, WANG L J, YANG J P, HE H, JIN H B, LI X M, REN T H, REN Z L, LI F, HAN X, et al. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nature Genetics, 2021, 53(4): 574-584.
doi: 10.1038/s41588-021-00808-z
pmid: 33737755
|
[28] |
LIU C, HUANG Y H, GUO X R, YI C Y, LIU Q, ZHANG K B, ZHU C L, LIU Y, HAN F P. Young retrotransposons and non-B DNA structures promote the establishment of dominant rye centromere in the 1RS.1BL fused centromere. New Phytologist, 2024, 241(2): 607-622.
|
[29] |
EVTUSHENKO E V, LEVITSKY V G, ELISAFENKO E A, GUNBIN K V, BELOUSOV A I, ŠAFÁŘ J, DOLEŽEL J, VERSHININ A V. The expansion of heterochromatin blocks in rye reflects the co-amplification of tandem repeats and adjacent transposable elements. BMC Genomics, 2016, 17: 337.
doi: 10.1186/s12864-016-2667-5
pmid: 27146967
|
[30] |
BIMPONG D, ZHAO L L, RAN M Y, ZHAO X Z, WU C C, LI Z Q, WANG X, CHENG L, FANG Z W, HU Z M, et al. Transcriptomic analysis reveals the regulatory mechanisms of messenger RNA (mRNA) and long non-coding RNA (lncRNA) in response to waterlogging stress in rye (Secale cereale L.). BMC Plant Biology, 2024, 24(1): 534.
|
[31] |
NIAN L L, LIU X L, YANG Y B, ZHU X L, YI X F, HAIDER F U. Genome-wide identification, phylogenetic, and expression analysis under abiotic stress conditions of LIM gene family in Medicago sativa L. PLoS ONE, 2021, 16(6): e0252213.
|
[32] |
MANI B, AGARWAL M, KATIYAR-AGARWAL S. Comprehensive expression profiling of rice tetraspanin genes reveals diverse roles during development and abiotic stress. Frontiers in Plant Science, 2015, 6: 1088.
doi: 10.3389/fpls.2015.01088
pmid: 26697042
|
[33] |
周宾寒, 杨竹, 王书平, 方正武, 胡赞民, 徐兆师, 张迎新. 小麦幼苗活性LTR反转录转座子筛选及其对非生物胁迫的响应. 作物学报, 2023, 49(4): 966-977.
doi: 10.3724/SP.J.1006.2023.21023
|
|
ZHOU B H, YANG Z, WANG S P, FANG Z W, HU Z M, XU Z S, ZHANG Y X. Screening of active LTR retrotransposons in wheat (Triticum aestivum L.) seedlings and analysis of their responses to abiotic stresses. Acta Agronomica Sinica, 2023, 49(4): 966-977. (in Chinese)
|
[34] |
TAMURA K, STECHER G, KUMAR S. MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
doi: 10.1093/molbev/msab120
pmid: 33892491
|
[35] |
BAILEY T L, JOHNSON J, GRANT C E, NOBLE W S. The MEME suite. Nucleic Acids Research, 2015, 43(W1): W39-W49.
|
[36] |
CHEN C J, CHEN H, ZHANG Y, THOMAS H R, FRANK M H, HE Y H, XIA R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202.
doi: S1674-2052(20)30187-8
pmid: 32585190
|
[37] |
ZHOU Y B, LI Y, QI X L, LIU R B, DONG J H, JING W H, GUO M M, SI Q L, XU Z S, LI L C, et al. Overexpression of V-type H+ pyrophosphatase gene EdVP 1 from Elymus dahuricus increases yield and potassium uptake of transgenic wheat under low potassium conditions. Scientific Reports, 2020, 10(1): 5020.
|
[38] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods, 2001, 25(4): 402-408.
|
[39] |
FELDMAN M, LEVY A A. Genome evolution due to allopolyploidization in wheat. Genetics, 2012, 192(3): 763-774.
doi: 10.1534/genetics.112.146316
pmid: 23135324
|
[40] |
MA M X, LIU J H, SONG Y J, LI L, LI Y F. TaqMan MGB probe fluorescence real-time quantitative PCR for rapid detection of Chinese Sacbrood virus. PLoS ONE, 2013, 8(2): e52670.
|
[41] |
KOLACSEK O, IZSVÁK Z, IVICS Z, SARKADI B, ORBÁN T I. Quantitative analysis of DNA transposon-mediated gene delivery:The Sleeping Beauty system as an example. Iconcept Press Ltd, 2014, 7(1): 112-123.
|
[42] |
SHAN X H, LIU Z L, DONG Z Y, WANG Y M, CHEN Y, LIN X Y, LONG L K, HAN F P, DONG Y S, LIU B. Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Molecular Biology and Evolution, 2005, 22(4): 976-990.
|
[43] |
PAN Y P, BO K L, CHENG Z H, WENG Y Q. The loss-of-function GLABROUS3mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biology, 2015, 15(1): 302.
|
[44] |
MERIÇ S, AYAN A, GÜNDÜZ B, ÖZPIRINÇCI C, ÇELIK Ö, ATAK Ç. Investigation of Tos17 LTR retrotransposon movements in rice (Oryza sativa L.) under nickel and boron stress. Cereal Research Communications, 2024, 52(4): 1299-1312.
|
[45] |
YANG L L, ZHANG X Y, WANG L Y, LI Y G, LI X T, YANG Y, SU Q, CHEN N, ZHANG Y L, LI N, DENG C L, LI S F, GAO W J. Lineage-specific amplification and epigenetic regulation of LTR- retrotransposons contribute to the structure, evolution, and function of Fabaceae species. BMC Genomics, 2023, 24(1): 423.
|
[46] |
OKAMOTO H, HIROCHIKA H. Silencing of transposable elements in plants. Trends in Plant Science, 2001, 6(11): 527-534.
pmid: 11701381
|
[47] |
ZHANG P P, MBODJ A, SOUNDIRAMOURTTY A, LLAURO C, GHESQUIÈRE A, INGOUFF M, KEITH SLOTKIN R, PONTVIANNE F, CATONI M, MIROUZE M. Extrachromosomal circular DNA and structural variants highlight genome instability in Arabidopsis epigenetic mutants. Nature Communications, 2023, 14(1): 5236.
|
[48] |
GASPAROTTO E, BURATTIN F V, DI GIOIA V, PANEPUCCIA M, RANZANI V, MARASCA F, BODEGA B. Transposable elements co-option in genome evolution and gene regulation. International Journal of Molecular Sciences, 2023, 24(3): 2610.
|
[49] |
MIYAO A, YAMANOUCHI U. Transposable element finder (TEF): Finding active transposable elements from next generation sequencing data. BMC Bioinformatics, 2022, 23(1): 500.
doi: 10.1186/s12859-022-05011-3
pmid: 36418944
|
[50] |
MA J X, JACKSON S A. Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Research, 2006, 16(2): 251-259.
pmid: 16354755
|