| [1] | LI H, LIU J Y, YUAN X X, CHEN X, CUI X Y. Comparative transcriptome analysis reveals key pathways and regulatory networks in early resistance of Glycine max to soybean mosaic virus. Frontiers in Microbiology, 2023, 14: 1241076. | 
																													
																						| [2] | PEDERSEN P, GRAU C, CULLEN E, KOVAL N, HILL J H. Potential for integrated management of soybean virus disease. Plant Disease, 2007, 91(10): 1255-1259.  doi: 10.1094/PDIS-91-10-1255
																																					pmid: 30780527
 | 
																													
																						| [3] | XIE M M, SUN J H, GONG D P, KONG Y Z. The roles of Arabidopsis C1-2i subclass of C2H2-type zinc-finger transcription factors. Genes, 2019, 10(9): 653. | 
																													
																						| [4] | ZHANG Z Y, LIU H H, SUN C, MA Q B, HUAI Y B, KANG C, XU Y Y. A C2H2 zinc-finger protein OsZFP213 interacts with OsMAPK3 to enhance salt tolerance in rice. Journal of Plant Physiology, 2018, 229: 100-110. | 
																													
																						| [5] | NGUYEN X C, KIM S H, LEE K, KIM K E, LIU X M, HAN H J, HOANG M H T, LEE S W, HONG J C, MOON Y H, CHUNG W S. Identification of a C2H2-type zinc finger transcription factor (ZAT10) from Arabidopsis as a substrate of MAP kinase. Plant Cell Reports, 2012, 31(4): 737-745. | 
																													
																						| [6] | KE Y D, HUANG Y W, VISWANATH K K, HU C C, YEH C M, MITSUDA N, LIN N S, HSU Y H. NbNAC42 and NbZFP3 transcription factors regulate the virus inducible NbAGO5 promoter in Nicotiana benthamiana. Frontiers in Plant Science, 2022, 13: 924482. | 
																													
																						| [7] | PENG J Y, LI Z H, WEN X, LI W Y, SHI H, YANG L S, ZHU H Q, GUO H W. Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genetics, 2014, 10(10): e1004664. | 
																													
																						| [8] | 倪晓详, 王晓荣, 陆军, 从青, 程龙军. 巨桉锌指结构蛋白基因EgrZFP7在低温胁迫中的功能研究. 农业生物技术学报, 2018, 26(8): 1288-1295. | 
																													
																						|  | NI X X, WANG X R, LU J, CONG Q, CHENG L J. Study on the function of zinc finger protein gene EgrZFP7 in cold stress response of Eucalyptus grandis. Journal of Agricultural Biotechnology, 2018, 26(8): 1288-1295. (in Chinese) | 
																													
																						| [9] | SAKUMA Y, LIU Q, DUBOUZET J G, ABE H, SHINOZAKI K, YAMAGUCHI S K. DNA-binding specifi city of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009. | 
																													
																						| [10] | ZHAI Y, WANG Y, LI Y J, LEI T T, YAN F, SU L T, LI X W, ZHAO Y, SUN X, LI J W, WANG Q Y. Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene, 2013, 513(1): 174-183.  doi: 10.1016/j.gene.2012.10.018
																																					pmid: 23111158
 | 
																													
																						| [11] | MA N, SUN P, LI Z Y, ZHANG F J, WANG X F, YOU C X, ZHANG C L, ZHANG Z L. Plant disease resistance outputs regulated by AP2/ERF transcription factor family. Stress Biology, 2024, 4(1): 2.  doi: 10.1007/s44154-023-00140-y
																																					pmid: 38163824
 | 
																													
																						| [12] | HUANG P Y, ZHANG J S, JIANG B E, CHAN C, YU J H, LU Y P, CHUNG K, ZIMMERLI L.  NINJA-associated ERF19 negatively regulates Arabidopsis pattern-triggered immunity. Journal of Experimental Botany, 2019, 70(3): 1033-1047. | 
																													
																						| [13] | 邵文靖, 石洁, 张普, 郎明林. ERF转录因子调控生物胁迫反应的研究进展. 生物技术通报, 2021, 37(3): 136-143.  doi: 10.13560/j.cnki.biotech.bull.1985.2020-0736
 | 
																													
																						|  | SHAO W J, SHI J, ZHANG P, LANG M L. Research progress of ERF transcription factors in regulating biological stress responses. Biotechnology Bulletin, 2021, 37(3): 136-143. (in Chinese) | 
																													
																						| [14] | 赵玎玲, 王梦璇, 孙天杰, 苏伟华, 赵志华, 肖付明, 赵青松, 闫龙, 张洁, 王冬梅. 大豆单锌指蛋白基因GmSZFP的克隆及其在SMV与寄主互作中的功能. 中国农业科学 , 2022 , 55 (14): 2685-2695. doi: 10.3864/j.issn.0578-1752.2022.14.001 . | 
																													
																						|  | ZHAO D L, WANG M X , SUN T J , SU W H , ZHAO Z H , XIAO F M , ZHAO Q S , YAN L , ZHANG J , WANG D M . Cloning of the soybean single zinc finger protein gene GmSZFP and its functional analysis in SMV-host interactions. Scientia Agricultura Sinica , 2022 , 55 (14): 2685-2695. doi: 10.3864/j.issn.0578-1752.2022.14.001 . (in Chinese) | 
																													
																						| [15] | 王月明. 河北省大豆品种对SMV的抗性鉴定及感染后的细胞学研究[D]. 保定: 河北农业大学, 2006. | 
																													
																						|  | WANG Y M. Identification of resistance of soybean varieties to SMV in Hebei Province and cytological study after infection[D]. Baoding: Hebei Agricultural University, 2006. (in Chinese) | 
																													
																						| [16] | 苏伟华, 赵志华, 齐梦楠, 孙天杰, 王冬梅, 张洁. 病程相关蛋白基因GmPR1-6的克隆及其在大豆抵抗SMV侵染过程中的功能初探. 河北农业大学学报, 2023, 46(4): 8-15. | 
																													
																						|  | SU W H, ZHAO Z H, QI M N, SUN T J, WANG D M, ZHANG J. Cloning and functional analysis of pathogenesis-related protein gene GmPR1-6 in soybean resistance to SMV. Journal of Hebei Agricultural University, 2023, 46(4): 8-15. (in Chinese) | 
																													
																						| [17] | 孙天杰, 麻楠, 孙立永, 王梦璇, 孙希哲, 张洁, 王冬梅. 一种基于TRV-VIGS的高通量大豆基因功能验证方法. 农业生物技术学报, 2020, 28(11): 2080-2090. | 
																													
																						|  | SUN T J, MA N, SUN L Y, WANG M X, SUN X Z, ZHANG J, WANG D M. A TRV-VIGS-based approach for high throughput gene function verification in soybean (Glycine max). Journal of Agricultural Biotechnology, 2020, 28(11): 2080-2090. (in Chinese) | 
																													
																						| [18] | SUN T J, SUN X Z, LI F K, MA N, WANG M X, CHEN Y, LIU N, JIN Y, ZHANG J, HOU C Y, YANG C Y, WANG D M. H2O2 mediates transcriptome reprogramming during soybean mosaic virus-induced callose deposition in soybean. The Crop Journal, 2022, 10(1): 262-272. | 
																													
																						| [19] | 王梦璇, 孙希哲, 孙天杰, 张洁, 王冬梅. GmGSL7c在大豆抗SMV过程中的作用. 河北大学学报(自然科学版), 2021, 41(1): 47-54.  doi: 10.3969/j.issn.1000-1565.2021.01.007
 | 
																													
																						|  | WANG M X, SUN X Z, SUN T J, ZHANG J, WANG D M. Effect of GmGSL7c in SMV infected soybean. Journal of Hebei University (Natural Science Edition), 2021, 41(1): 47-54. (in Chinese) | 
																													
																						| [20] | LI W L, ZHAO Y S, LIU C J, YAO G B, WU S S, HOU C Y, ZHANG M C, WANG D M. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of Soybean mosaic virus. Plant Cell Reports, 2012, 31(5): 905-916.  doi: 10.1007/s00299-011-1211-y
																																					pmid: 22200865
 | 
																													
																						| [21] | DENG H Q, LIU H B, LI X H, XIAO J H, WANG S P. A CCCH- type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. Plant Physiology, 2012, 158(2): 876-889. | 
																													
																						| [22] | GUO Y H, YU Y P, WANG D, WU C G, YANG G D, HUANG J G, ZHENG C C. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytologist, 2009, 183(1): 62-75. | 
																													
																						| [23] | WANG L H, CHEN J, ZHAO Y Q, WANG S P, YUAN M. OsMAPK 6 phosphorylates a zinc finger protein OsLIC to promote downstream OsWRKY30 for rice resistance to bacterial blight and leaf streak. Journal of Integrative Plant Biology, 2022, 64(5): 1116-1130. | 
																													
																						| [24] | WEBER H, HELLMANN H. Arabidopsis thaliana BTB/ POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family. The FEBS Journal, 2009, 276(22): 6624-6635. | 
																													
																						| [25] | SUN L J, DONG X X, SONG X S. PtrABR1 increases tolerance to drought stress by enhancing lateral root formation in Populus trichocarpa. International Journal of Molecular Sciences, 2023, 24(18): 13748. | 
																													
																						| [26] | ZHU Z G, SHI J L, XU W R, LI H E, HE M Y, XU Y, XU T F, YANG Y Z, CAO J L, WANG Y J. Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. Journal of Plant Physiology, 2013, 170(10): 923-933. | 
																													
																						| [27] | MCGRATH K C, DOMBRECHT B, MANNERS J M, SCHENK P M, EDGAR C I, MACLEAN D J, SCHEIBLE W R, UDVARDI M K, KAZAN K. Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiology, 2005, 139(2): 949-959. | 
																													
																						| [28] | LIU D F, CHEN X J, LIU J Q, YE J C, GUO Z J. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany, 2012, 63(10): 3899-3911. | 
																													
																						| [29] | LEE J H, HONG J P, OH S K, LEE S, CHOI D, KIM W T. The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: Possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Molecular Biology, 2004, 55(1): 61-81. | 
																													
																						| [30] | ZANG Z Y, LV Y, LIU S, YANG W, CI J B, REN X J, WANG Z, WU H, MA W Y, JIANG L Y, YANG W G. A novel ERF transcription factor, ZmERF105, positively regulates maize resistance to Exserohilum turcicum. Frontiers in Plant Science, 2020, 11: 850. | 
																													
																						| [31] | HUANG Y, ZHANG B L, SUN S, XING G M, WANG F, LI M Y, TIAN Y S, XIONG A S. AP2/ERF transcription factors involved in response to tomato yellow leaf curly virus in tomato. The Plant Genome, 2016, 9(2): 1-15. | 
																													
																						| [32] | LIANG H X, LU Y, LIU H X, WANG F D, XIN Z Y, ZHANG Z Y. A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses. Journal of Experimental Botany, 2008, 59(11): 3111-3120. | 
																													
																						| [33] | CUI H T, TSUDA K, PARKER J E. Effector-triggered immunity: From pathogen perception to robust defense. Annual Review of Plant Biology, 2015, 66: 487-511.  doi: 10.1146/annurev-arplant-050213-040012
																																					pmid: 25494461
 | 
																													
																						| [34] | KAZAN K, MANNERS J M. MYC2: The master in action. Molecular Plant, 2013, 6(3): 686-703.  doi: 10.1093/mp/sss128
																																					pmid: 23142764
 | 
																													
																						| [35] | WANG X, DING Y L, LI Z Y, SHI Y T, WANG J L, HUA J, GONG Z Z, ZHOU J M, YANG S H. PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15. Developmental Cell, 2019, 51(2): 222-235.  doi: S1534-5807(19)30691-4
																																					pmid: 31543444
 |