[1] |
|
|
FENG Y K, WANG J, MA J L, ZHANG L M, LI Y J. Effects of miR-31-5p on the proliferation and apoptosis of hair follicle stem cells in goat. Scientia Agricultura Sinica, 2021, 54(23): 5132-5143. doi: 10.3864/j.issn.0578-1752.2021.23.017. (in Chinese)
|
[2] |
AVIGAD LARON E, AAMAR E, ENSHELL-SEIJFFERS D. The mesenchymal niche of the hair follicle induces regeneration by releasing primed progenitors from inhibitory effects of quiescent stem cells. Cell Reports, 2018, 24(4): 909-921.e3.
doi: S2211-1247(18)31011-8
pmid: 30044987
|
[3] |
HE X L, CHAO Y, ZHOU G X, CHEN Y L. Fibroblast growth factor 5-short (FGF5s) inhibits the activity of FGF5 in primary and secondary hair follicle dermal papilla cells of Cashmere goats. Gene, 2016, 575(2): 393-398.
|
[4] |
WANG X L, CAI B, ZHOU J K, ZHU H J, NIU Y Y, MA B H, YU H H, LEI A M, YAN H L, SHEN Q Y, SHI L, ZHAO X E, HUA J L, HUANG X X, QU L, CHEN Y L. Correction: disruption of FGF5 in Cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS One, 2016, 11(11): e0167322.
|
[5] |
MORGAN B A. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harbor Perspectives in Medicine, 2014, 4(7): a015180.
|
[6] |
ROMPOLAS P, DESCHENE E R, ZITO G, GONZALEZ D G, SAOTOME I, HABERMAN A M, GRECO V. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature, 2012, 487: 496-499.
|
[7] |
CHI W, WU E, MORGAN B A. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development, 2013, 140(8): 1676-1683.
doi: 10.1242/dev.090662
pmid: 23487317
|
[8] |
HWANG S B, PARK H J, LEE B H. Hair-growth-promoting effects of the fish collagen peptide in human dermal papilla cells and C57BL/6 mice modulating Wnt/β-catenin and BMP signaling pathways. International Journal of Molecular Sciences, 2022, 23(19): 11904.
|
[9] |
HIGGINS C A, CHEN J C, CERISE J E, JAHODA C A B, CHRISTIANO A M. Microenvironmental reprogramming by three- dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(49): 19679-19688.
|
[10] |
GENTILE P, GARCOVICH S. Advances in regenerative stem cell therapy in androgenic alopecia and hair loss: Wnt pathway, growth- factor, and mesenchymal stem cell signaling impact analysis on cell growth and hair follicle development. Cells, 2019, 8(5): 466.
|
[11] |
GRIGGS J, TRÜEB R M, GAVAZZONI DIAS M F R, HORDINSKY M, TOSTI A. Fibrosing alopecia in a pattern distribution. Journal of the American Academy of Dermatology, 2021, 85(6): 1557-1564.
doi: 10.1016/j.jaad.2019.12.056
pmid: 31926219
|
[12] |
LIU X, ZHANG P, ZHANG X F, LI X, BAI Y, AO Y, HEXIG B, GUO X D, LIU D J. Fgf21 knockout mice generated using CRISPR/ Cas9 reveal genetic alterations that may affect hair growth. Gene, 2020, 733: 144242.
|
[13] |
DONG Y, XIE M, JIANG Y, XIAO N Q, DU X Y, ZHANG W G, TOSSER-KLOPP G, WANG J H, YANG S, LIANG J, et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nature Biotechnology, 2013, 31(2): 135-141.
doi: 10.1038/nbt.2478
pmid: 23263233
|
[14] |
KAWANO M, KOMI-KURAMOCHI A, ASADA M, SUZUKI M, OKI J, JIANG J, IMAMURA T. Comprehensive analysis of FGF and FGFR expression in skin: FGF18 is highly expressed in hair follicles and capable of inducing anagen from telogen stage hair follicles. Journal of Investigative Dermatology, 2005, 124(5): 877-885.
pmid: 15854025
|
[15] |
吴晋强, 曹校瑞, 闫瑞琴, 陆娜, 张娇娇, 吴佳豪, 赫晓燕. FGF21及其受体FGFR1和FGFR2在小鼠毛囊第1生长周期的表达. 畜牧兽医学报, 2019, 50(3): 534-543.
|
|
WU J Q, CAO X R, YAN R Q, LU N, ZHANG J J, WU J H, HE X Y. Expression of FGF21 and receptors FGFR1, FGFR2 in the first hair follicle growth cycle of mice. Chinese Journal of Animal and Veterinary Sciences, 2019, 50(3): 534-543. (in Chinese)
|
[16] |
WANG S H, GE W, LUO Z X, GUO Y, JIAO B L, QU L, ZHANG Z Y, WANG X. Integrated analysis of coding genes and non-coding RNAs during hair follicle cycle of Cashmere goat (Capra hircus). BMC Genomics, 2017, 18(1): 767.
|
[17] |
GE W, TAN S J, WANG S H, LI L, SUN X F, SHEN W, WANG X. Single-cell Transcriptome Profiling reveals Dermal and Epithelial cell fate decisions during Embryonic Hair Follicle Development. Theranostics, 2020, 10(17): 7581-7598.
doi: 10.7150/thno.44306
pmid: 32685006
|
[18] |
|
|
ZHANG W D, ZHENG Y J, GE W, ZHANG Y L, LI F, WANG X. Identification of Cashmere dermal papilla cells based on single-cell RNA sequencing technology. Scientia Agricultura Sinica, 2022, 55(12): 2436-2446. doi: 10.3864/j.issn.0578-1752.2022.12.014. (in Chinese)
|
[19] |
GONG G, FAN Y X, ZHANG Y, YAN X C, LI W Z, YAN X M, HE L B, WANG N, CHEN O, HE D, et al. The regulation mechanism of different hair types in Inner Mongolia Cashmere goat based on PI3K-AKT pathway and FGF21. Journal of Animal Science, 2022, 100(11): skac292.
|
[20] |
DAI H, HU W J, ZHANG L Y, JIANG F Y, MAO X M, YANG G Y, LI L. FGF21 facilitates autophagy in prostate cancer cells by inhibiting the PI3K-Akt-mTOR signaling pathway. Cell Death & Disease, 2021, 12(4): 303.
|
[21] |
RONCA R, GHEDINI G C, MACCARINELLI F, SACCO A, LOCATELLI S L, FOGLIO E, TARANTO S, GRILLO E, MATARAZZO S, CASTELLI R, et al. FGF trapping inhibits multiple myeloma growth through c-myc degradation-induced mitochondrial oxidative stress. Cancer Research, 2020, 80(11): 2340-2354.
doi: 10.1158/0008-5472.CAN-19-2714
pmid: 32094301
|
[22] |
YANG Y, LU T T, LI Z M, LU S. FGFR1 regulates proliferation and metastasis by targeting CCND1 in FGFR1 amplified lung cancer. Cell Adhesion & Migration, 2020, 14(1): 82-95.
|
[23] |
CHEN B, HU R, MIN Q, LI Y K, PARKINSON D B, DUN X P. FGF5 regulates schwann cell migration and adhesion. Frontiers in Cellular Neuroscience, 2020, 14: 237.
doi: 10.3389/fncel.2020.00237
pmid: 32848626
|
[24] |
YAN B, MEI Z, TANG Y H, SONG H X, WU H L, JING Q M, ZHANG X L, YAN C H, HAN Y L. FGF21-FGFR1 controls mitochondrial homeostasis in cardiomyocytes by modulating the degradation of OPA1. Cell Death & Disease, 2023, 14(5): 311.
|
[25] |
YI F, PEREIRA L, HOFFMAN J A, SHY B R, YUEN C M, LIU D R, MERRILL B J. Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nature Cell Biology, 2011, 13(7): 762-770.
doi: 10.1038/ncb2283
pmid: 21685894
|
[26] |
FENG Z Y, DING H M, PENG Z W, HU K W. Downregulated KDM6A mediates gastric carcinogenesis via Wnt/β-catenin signaling pathway mediated epithelial-to-mesenchymal transition. Pathology - Research and Practice, 2023, 245(6): 154461.
|
[27] |
ZHANG W D, WANG N, ZHANG T T, WANG M, GE W, WANG X. Roles of melatonin in goat hair follicle stem cell proliferation and pluripotency through regulating the Wnt signaling pathway. Frontiers in Cell and Developmental Biology, 2021, 9: 686805.
|