[1] |
BOVÉ J M. Huanglongbing: A destructive, newly-emerging, century- old disease of citrus. Journal of Plant Pathology, 2006, 88(1): 7-37.
|
[2] |
林孔湘. 柑桔黄梢(黄龙)病研究 Ⅱ. 关于病原的探讨. 植物病理学报, 1956, 2(1): 13-42.
|
|
LIN K X. Research on citrus Huanglongbing Ⅱ. Discussion on the pathogen. Acta Phytopathologica Sinica, 1956, 2(1): 13-42. (in Chinese)
|
[3] |
ARITUA V, ACHOR D, GMITTER F G, ALBRIGO G, WANG N. Transcriptional and microscopic analyses of citrus stem and root responses to Candidatus Liberibacter asiaticus infection. PLoS ONE, 2013, 8(9): e73742.
|
[4] |
郭文武, 邓秀新. 柑桔黄龙病及其抗性育种研究. 农业生物技术学报, 1998(1): 37-41.
|
|
GUO W W, DENG X X. Research on citrus Huanglongbing and its resistance breeding. Journal of Agricultural Biotechnology, 1998(1): 37-41. (in Chinese)
|
[5] |
彭爱红. NPR和抗菌基因对柑橘黄龙病的抗性研究[D]. 重庆: 西南大学, 2021.
|
|
PENG A H. Development of transgenic HLB resistance in citrus with NPR and antimicrobial genes[D]. Chongqing: Southwest University, 2021. (in Chinese)
|
[6] |
MAHLAPUU M, HÅKANSSON J, RINGSTAD L, BJÖRN C. Antimicrobial peptides: An emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiology, 2016, 6: 194.
doi: 10.3389/fcimb.2016.00194
pmid: 28083516
|
[7] |
SOM A, VEMPARALA S, IVANOV I, TEW G N. Synthetic mimics of antimicrobial peptides. Biopolymers, 2008, 90(2): 83-93.
doi: 10.1002/bip.20970
pmid: 18314892
|
[8] |
BAHAR A, REN D. Antimicrobial peptides. Pharmaceuticals, 2013, 6(12): 1543-1575.
doi: 10.3390/ph6121543
pmid: 24287494
|
[9] |
AMSO Z, HAYOUKA Z. Antimicrobial random peptide cocktails: A new approach to fight pathogenic bacteria. Chemical Communications, 2019, 55(14): 2007-2014.
doi: 10.1039/c8cc09961h
pmid: 30688322
|
[10] |
DEHSORKHI A, CASTELLETTO V, HAMLEY I W. Self-assembling amphiphilic peptides. Journal of Peptide Science, 2014, 20(7): 453-467.
doi: 10.1002/psc.2633
pmid: 24729276
|
[11] |
LEE D L, HODGES R S. Structure-activity relationships of de novo designed cyclic antimicrobial peptides based on gramicidin S. Biopolymers, 2003, 71(1): 28-48.
|
[12] |
HUANG C Y, ARAUJO K, SÁNCHEZ J N, KUND G, TRUMBLE J, ROPER C, GODFREY K E, JIN H L. A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(6): e2019628118.
|
[13] |
GARCÍA J R C, KRAUSE A, SCHULZ S, RODRÍGUEZ-JIMÉNEZ F J, KLÜVER E, ADERMANN K, FORSSMANN U, FRIMPONG- BOATENG A, BALS R, FORSSMANN W G. Human β-defensin 4: A novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. The FASEB Journal, 2001, 15(10): 1819-1821.
|
[14] |
YANAGI S, ASHITANI J, ISHIMOTO H, DATE Y, MUKAE H, CHINO N, NAKAZATO M. Isolation of human β-defensin-4 in lung tissue and its increase in lower respiratory tract infection. Respiratory Research, 2005, 6(1): 130.
|
[15] |
张清杰, 张景宁, 黄自然, 谭石慈, 郭周仪. 柞蚕抗菌肽对柑桔黄龙病及溃疡病病原菌的杀菌作用. 蚕业科学, 1995, 21(2): 77-81.
|
|
ZHANG Q J, ZHANG J N, HUANG Z R, TAN S C, GUO Z Y. The bactericidal effect of Antherea pernyi antibacterial peptides on pathogenic bacteria of citrus Huanglongbing and citrus canker. Acta Sericologica Sinica, 1995, 21(2): 77-81. (in Chinese)
|
[16] |
ZOU X P, JIANG X Y, XU L Z, LEI T G, PENG A H, HE Y R, YAO L X, CHEN S C. Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Plant Molecular Biology, 2017, 93(4): 341-353.
|
[17] |
|
|
ZHANG Q, DUAN Y, SU Y, JIANG Q Q, WANG C Q, BIN Y, SONG Z. Construction and application of expression vector based on citrus leaf blotch virus. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407. doi: 10.3864/j.issn.0578-1752.2022.22.006. (in Chinese)
|
[18] |
MA H, MENG X, XU K, LI M, GMITTER F G, LIU N G, GAI Y P, HUANG S Y, WANG M, WANG N, XU H R, LIU J H, SUN X P, DUAN S. Highly efficient hairy root genetic transformation and applications in citrus. Frontiers in Plant Science, 2022, 13: 1039094.
|
[19] |
XIAO Y X, DUTT M, MA H, XIAO C, TONG Z, WANG Z Q, HE X J, SUN Z H, QIU W M. Establishment of an efficient root mediated genetic transformation method for gene function verification in citrus. Scientia Horticulturae, 2023, 321: 112298.
|
[20] |
WANG M, QIN Y Y, WEI N N, XUE H Y, DAI W S. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation in citrus seeds and its application in gene functional analysis. Frontiers in Plant Science, 2023, 14: 1293374.
|
[21] |
IRIGOYEN S, RAMASAMY M, PANT S, NIRAULA P, BEDRE R, GURUNG M, ROSSI D, LAUGHLIN C, GORMAN Z, ACHOR D, et al. HPlant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp. Nature Communications, 2020, 11(1): 5802.
|
[22] |
RAMASAMY M, DOMINGUEZ M M, IRIGOYEN S, PADILLA C S, MANDADI K K. Rhizobium rhizogenes-mediated hairy root induction and plant regeneration for bioengineering citrus. Plant Biotechnology Journal, 2023, 21(9): 1728-1730.
doi: 10.1111/pbi.14096
pmid: 37314751
|
[23] |
CIFUENTES-ARENAS J C, BEATTIE G A C, PEÑA L, LOPES S A. Murraya paniculata and Swinglea glutinosa as short-term transient hosts of ‘Candidatus Liberibacter asiaticus’ and implications for the spread of Huanglongbing. Phytopathology, 2019, 109(12): 2064-2073.
|
[24] |
文庆利, 谢竹, 吴柳, 何永睿, 陈善春, 邹修平. 柑橘响应黄龙病侵染的韧皮部蛋白2基因CsPP2B15的克隆与表达分析. 园艺学报, 2018, 45(12): 2347-2357.
doi: 10.16420/j.issn.0513-353x.2018-0377
|
|
WEN Q L, XIE Z, WU L, HE Y R, CHEN S C, ZOU X P. Clone and expression analysis of the citrus phloem protein 2 gene CsPP2B15 responding to Huanglongbing infection in citrus. Acta Horticulturae Sinica, 2018, 45(12): 2347-2357. (in Chinese)
|
[25] |
钟晰. 马蜂柑响应黄龙病菌侵染前期与后期的转录组和蛋白组学研究[D]. 重庆: 西南大学, 2018.
|
|
ZHONG X. Transcriptomic and proteomic analysis of Citrus hystrix responses to ‘Candidatus Liberibacter asiaticus’ in early and late stage of infection[D]. Chongqing: Southwest University, 2018. (in Chinese)
|
[26] |
ZHOU L L, WANG Y L, WANG P L, WANG C L, WANG J M, WANG X F, CHENG H M. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene editing analysis in cotton. Frontiers in Plant Science, 2022, 13: 1059404.
|
[27] |
CHENG Y Y, WANG X L, CAO L, JI J, LIU T F, DUAN K X. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Methods, 2021, 17(1): 73.
|
[28] |
ISHIDA Y, HIEI Y, KOMARI T. Agrobacterium-mediated transformation of maize. Nature Protocols, 2007, 2(7): 1614-1621.
doi: 10.1038/nprot.2007.241
pmid: 17585302
|
[29] |
PENG A H, ZOU X P, HE Y R, CHEN S C, LIU X F, ZHANG J Y, ZHANG Q W, XIE Z, LONG J H, ZHAO X C. Overexpressing a NPR1-like gene from Citrus paradisi enhanced Huanglongbing resistance in C. sinensis. Plant Cell Reports, 2021, 40(3): 529-541.
|
[30] |
LEI T G, HE Y R, ZOU X P, WANG X F, FU S M, PENG A H, XU L Z, YAO L X, CHEN S C, ZHOU C Y. A rapid multiplication system for ‘Candidatus Liberibacter asiaticus’ through regeneration of axillary buds in vitro. Journal of Integrative Agriculture, 2022, 21(6): 1683-1693.
|
[31] |
谢竹. 柑橘黄龙病菌在根和叶中与寄主互作的比较分析[D]. 重庆: 西南大学, 2020.
|
|
XIE Z. Comparative analysis of the interaction of Candidatus Liberibacter asiaticus with root and leaf of host[D]. Chongqing: Southwest University, 2020. (in Chinese)
|