中国农业科学 ›› 2015, Vol. 48 ›› Issue (S): 104-112.doi: 10.3864/j.issn.0578-1752.2015.S.012
• 无栏目 • 上一篇
支苏丽,张克强
收稿日期:
2015-09-12
出版日期:
2015-10-20
发布日期:
2015-10-20
通讯作者:
张克强,Tel:13902079356;E-mail:kqzhang68@126.com
作者简介:
支苏丽,Tel:13752562238;E-mail:zhisuli87@163.com
基金资助:
ZHI Su-li, ZHANG Ke-qiang
Received:
2015-09-12
Online:
2015-10-20
Published:
2015-10-20
摘要: 抗生素总消耗量中一半以上被用于畜禽养殖业,畜禽养殖业带来的抗生素污染已引起了人们广泛关注。近年来,大量学者报道兽用抗生素在不同环境介质中的残留浓度,并集中于抗生素去除技术的研究,但对其污染特点的总结与分析鲜有报道,并忽略了抗生素的源头控制。文章总结了兽用抗生素的污染分布特点,综述其去除方法,提出抗生素污染控制方案。通过分析兽用抗生素随地域、畜种、季节等因素的变化,得出兽用抗生素的污染特点,通过分析抗生素现有去除方法,指出今后的控制技术的发展方向。结论如下:中国东部地区兽用抗生素的残留浓度较大,且四环素类抗生素具有统一的大小关系,均为土霉素>金霉素>四环素,南方或北方地区抗生素的残留浓度相对较小,且3种四环素类抗生素不具有一致的大小规律;从不同畜种粪便中抗生素的残留规律发现,生猪养殖业往往具有最大的抗生素残留浓度;此外,从不同季节畜禽粪便中抗生素的残留规律来看,温度较低的冬季抗生素污染浓度高于夏季。展望中提出,兽用抗生素污染控制需要全面行动,首先,根据兽用抗生素污染特点,提出针对不同区域、季节、畜种制定不同的源头控制策略;其次,加快寻找抗生素替代品的步伐;第三,建立抗生素在养殖业的精准施加,节制其使用量;最后,针对抗生素现有控制技术,提出“优先去除”,即在兽用抗生素散播入环境前,通过磁性吸附或催化氧化等高效物化方法将其去除,不仅能够有效防止抗生素随畜禽粪便和污水进一步迁移至环境,而且不影响粪污的进一步利用,同时,提出兽用抗生素的去除技术应以降解机理和中间产物的确定为研究重点,并且今后研究应以实际畜禽养殖废弃物为研究对象。总之,兽用抗生素的污染特点可以为畜禽养殖业抗生素污染控制提供参考作用。
支苏丽,张克强. 兽用抗生素污染特点与控制技术[J]. 中国农业科学, 2015, 48(S): 104-112.
ZHI Su-li, ZHANG Ke-qiang. Antibiotics Pollution Characteristics and Control of Livestock Breeding Industry[J]. Scientia Agricultura Sinica, 2015, 48(S): 104-112.
[1] Heilig S, Lee P, Breslow L. Curtailing antibiotic use in agriculture: It is time for action: This use contributes to bacterial resistance in humans. Western Journal of Medicine, 2002, 176(1): 9-11.
[2] Peeples L. Antibiotics use in farm animals still broadly unaddressed despite ‘fanfare’ for FDA move. http://www.huffingtonpost.com/2012/ 01/09/antibiotic-farm-animals-fda-regulation_n_1193680.html.
[3] Li X W, Xie Y F, Wang J F, Christakos G, Si J L, Zhao H N, Ding Y Q, Li J. Influence of planting patterns on fluoroquinolone residues in the soil of an intensive vegetable cultivation area in northern China. Science of the Total Environment, 2013, 458-460: 63-69.
[4] Haller M Y, Muller S R, McArdell C S, Alder A C, Suter J F. Quantification of veterinary antibiotics (sulfonamids and trimethoprim) in animal manure by liquid chromatography–mass spectrometry. Journal of Chromatography A, 2002, 952(1/2): 111-120.
[5] Halling-Sørensen B. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Archives of Environmental Contamination and Toxicology, 2001, 40(4): 451-460.
[6] 鲍艳宇. 四环素类抗生素在土壤中的环境行为及生态毒性研究[D]. 天津: 南开大学, 2008.
Bao Y Y. Environmental behavior and eco-toxicity of tetracycline antibiotics in soils [D]. Tianjin: Nankai University, 2008. (in Chinese)
[7] Xie Y F, Li X W, Wang J F, Christakos G, Hu M G, An L H, Li F S. Spatial estimation of antibiotic residues in surface soils in a typical intensive vegetable cultivation area in China. Science of the Total Environment, 2012, 430: 126-131.
[8] Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 2010, 158(9): 2992-2998.
[9] Karci A, Balcioglu I A. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Science of the Total Environment, 2009, 407(16): 4652-4664.
[10] 姚建华, 牛德奎, 李兆君, 梁永超, 张树清. 抗生素土霉素对小麦根际土壤酶活性和微生物生物量的影响. 中国农业科学, 2010, 43(4): 721-728.
Yao J H, Niu D K, Li Z J, Liang Y C, Zhang S Q. Effects of antibiotics oxytetracycline on soil enzyme activities and microbial biomass in wheat rhizosphere. China Agriculture Science, 2010, 43(4): 721-728. (in Chinese)
[11] Barnes K K, Kolpin D W, Furlong E T, Zaugg S D, Meyer M T, Barber L B. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States —I) groundwater. Science of the Total Environment, 2008, 402(2/3): 192-200.
[12] Batt A L, Bruce I B, Aga D S. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environmental Pollution, 2006, 142(2): 295-302.
[13] Hirsch R, Ternes T, Haberer K, Kratz K L. Occurrence of antibiotics in the aquatic environment. Science of the Total Environment, 1999, 225(1/2): 109-118.
[14] Yang J F, Ying G G, Zhao J L, Tao R, Su H C, Liu Y S. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China. Journal of Environmental Science and Health B, 2011, 46(3): 272-280.
[15] 葛林科, 任红蕾, 鲁建江, 高会, 张蓬, 那广水. 我国环境中新兴污染物抗生素及其抗性基因的分布特征. 环境化学, 2015, 34(5): 875-883.
Ge L K, Ren H L, Lu J J, Gao H, Zhang P, Na G S.Occurrence of antibiotics and corresponding resistance genes in the environment of China. Environmental Chemistry, 2015, 34(5): 875-888. (in Chinese)
[16] 郭晓, 李国良, 刘孝利, 陈求稳. 梅江流域沉积物中四环素类抗生素的空间分布特征及其迁移转化规律. 环境科学学报, 2015, 35(10): 3202-3209.
Guo X, Li G L, Liu X L, Chen Q W. Spatial distribution, transportation and transformation of tetracyclines antibiotics in Meijiang river catchment. Acta Scientiae Circumstantiae, 2015, 35(10): 3202-3209. (in Chinese)
[17] 郭欣妍, 王娜, 许静, 焦少俊, 王昝畅, 单正军, 汤卫国. 兽药抗生素的环境暴露水平及其环境归趋研究进展. 环境科学与技术, 2014, 37(9): 76-86.
Guo X Y, Wang N, Xu J, Jiao S J, Wang Z C, Shan Z J, Tang W G. Research progress on environmental exposure levels and environmental fate of veterinary antibiotics. Environmental Science & Technology, 2014, 37(9): 76-89. (in Chinese)
[18] Li C, Chen J Y, Wang J H, Ma Z H, Han P, Luan Y X, Lu A X. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Science of the Total Environment, 2015, 521-522(15): 101-107
[19] Zhao L, Dong Y H, Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Science of the Total Environment, 2010, 408(5): 1069-1075.
[20] 张俊亚, 魏源送, 陈梅雪, 佟娟, 熊继海, 敖子强.畜禽粪便生物处理与土地利用全过程中抗生素和重金属抗性基因的赋存与转归特征研究进展.环境科学学报, 2015, 35( 4) : 935-946.
Zhang J Y,Wei Y S,Chen M X,Tong J, Xiong J H, Ao Z Q.Occurrence and fate of antibiotic and heavy metal resistance genes in the total process of biological treatment and land application of animal manure: A review.Acta Scientiae Circumstantiae, 2015, 35(4) : 935-946. (in Chinese)
[21] Zhou L J, Ying G G, Liu S. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Science of the Total Environment, 2013, 444: 183-195.
[22] 闾幸. 生猪养殖废水及地表水中兽用抗生素污染现状与处理技术研究. 上海: 上海师范大学, 2013: 1-10.
Lv X. Veterinary antibiotics in swine wastewater and groundwater and processing technology. Shanghai: Shanghai Normal University, 2013: 1-10. (in Chinese)
[23] 张树清, 张夫道, 刘秀梅, 王玉军, 邹邵文, 何绪生. 规模化养殖畜禽粪主要有害成分测定分析研究. 植物营养与肥料学报, 2005, 11(6): 822-829.
Zhang S Q, Zhang F D, Liu X M, Wang Y J, Zou S W, He X S. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots.Plant Nutrition and Fertilizer Science, 2005, 11(6): 822-829. (in Chinese)
[24] 单英杰, 章明奎. 不同来源畜禽粪的养分和污染物组成.中国生态农业学报, 2012, 20 (1): 80-86.
Shan Y J, Zhang M K. Contents of nutrient elementsand pollutants in different sources of animal manures. Chinese Journal of Eco-Agriculture, 2012, 20 (1): 80-86. (in Chinese)
[25] Hu X, Zhou Q, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 2010, 158(9): 2992-2998.
[26] Ji X L, Shen Q H, Liu F, Ma J, Xu G, Wang Y L, Wu M H. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai, China. Journal of Hazardous Materials, 2012, 235-236: 178-185.
[27] Zhou L J, Ying G G, Liu S, Zhang R Q, Lai H J, Chen Z F, Pan C C. Excretion masses and environmental occurrence of antibiotics in typical swine and dairy cattle farms in China. Science of the Total Environment, 2013, 444: 183-195.
[28] Ben W W, Qiang Z M, Adams C, Zhang H Q, Chen L P. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography– mass spectrometry. Journal of Chromatography A, 2008, 1202(2): 173-180.
[29] Wei R C, Ge F, Huang S Y, Chen M, Wang R. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China. Chemosphere, 2011, 82(10): 1408-1414.
[30] Tong L, Li P, Wang Y X, Zhu K Z. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere, 2009, 74(8): 1090-1097.
[31] 国彬, 姚丽贤, 刘忠珍, 何兆桓, 周昌敏, 李国良, 杨苞梅, 黄连喜. 广州市兽用抗生素的环境残留研究. 农业环境科学学报, 1130(5):938-945.
Guo B, Yao L X, Liu Z Z, He Z H, Zhou C M, Li G L, Yang B M, Huang L X. Environmental residues of veterinary antibiotics in Guangzhou city, China. Journal of Agro-Environment Science, 2011, 30(5): 938-945. (in Chinese)
[32] 李彦文, 莫测辉, 赵娜, 邰义萍, 包艳萍, 王纪阳, 李明阳, 梁伟明. 菜地土壤中磺胺类和四环素类抗生素污染特征研究. 环境科学, 2009, 30 (6): 1762-1766.
Li Y W, Mo C H, Zhao N, Tai Y P, Bao Y P, Wang J Y, Li M Y, Liang W M. Investigation of sulfonamides and tetracyclines antibiotics in soils from various vegetable fields. Environmental Science, 2009, 30(6): 1762-1766. (in Chinese)
[33] Huang X, Liu C, Li K, Liu F, Liao D R, Liu L, Zhu G F, Liao J. Occurrence and distribution of veterinary antibiotics and tetracycline resistance genes in farmland soils around swine feedlots in Fujian Province, China. Environmental Science and Pollution Research, 2013, 20: 9066-9074.
[34] 孙奉翠. 土壤中四类典型抗生素的同时测定及其方法优化. 济南: 山东大学, 2013.
Sun F C. Simultaneous determination of four kinds of typical antibiotics in soil and method optimization. Jinan: Shandong University, 2013. (in Chinese)
[35] 张慧敏, 章明奎, 顾国平. 浙北地区畜禽粪便和农田土壤中四环素类抗生素残留. 生态与农村环境学报, 2008, 24 (3): 69-73.
Zhang H M, Zhang M K Gu G P. Residues of tetracyclines in livestock and poultry manures and agricultural soils from north Zhejiang province. Journal of Ecology and Rural Environment, 2008, 24 (3): 69-73. (in Chinese)
[36] Hamscher G, Sczesny S, Höper H, Nau H. Determination of persistent tetracycline residues in soil fertilised with liquid manure by high- performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical Chemistry, 2002, 74(7): 1509-1518.
[37] MEPC (Ministry of Environmental Protection of China). Discharge standard of pollutants for livestock and poultry farms. GB 18596– 2001Beijing: Ministry of Environmental Protection of China, 2011.
[38] Pan X, Qiang Z M, Ben W W, Chen M X. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere, 2011, 84(5): 695-700.
[39] Ho Y B, Zakaria M P, Latif P A, Saari N, Saari N. Degradation of veterinary antibiotics and hormone during broiler manure composting. Bioresource Technology, 2013, 131, 476-484.
[40] Liu B, Li Y X, Zhang X L, Feng C H, Gao M, Shen Q. Effects of composting process on the dissipation of extractable sulfonamides in swine manure. Bioresource Technology, 2015, 175: 284-290.
[41] Qiu J R, He J H, Liu Q Y, Guo Z Y, He D C, Wu G Y, Xu Z C. Effects of conditioners on sulfonamides degradation during the aerobic composting of animal manures. Procedia Environmental Sciences, 2012, 16: 17-24.
[42] Selvam A, Zhao Z, Wong J W C. Composting of swine manure piked with sulfadiazine, chlortetracycline and ciprofloxacin. Bioresource Technology, 2012, 126: 412-417.
[43] Wu X F, Wei Y S, Zheng J X, Zhao X, Zhong W K. The behavior of tetracyclines and their degradation products during swine manure composting. Bioresource Technology, 2011, 102: 5924-5931.
[44] Arikana O A, Mulbry W, Rice C. Management of antibiotic residues from agricultural sources: Use of composting to reduce chlortetracycline residues in beef manure from treated animals. Journal of Hazardous Materials, 2009, 164(2-3): 483-489.
[45] Arikan O A, Sikora L J, Mulbry W, Khan S U, Foster G D. Composting rapidly reduces levels of extractable oxytetracycline in manure from therapeutically treated beef calves. Bioresource Technology, 2007, 98:169-176.
[46] Bao Y, Zhou Q, Guan L, Wang Y. Depletion of chlortetracycline during composting of aged and spiked manures. Waste Management, 2009, 29: 1416-1423.
[47] Kim K R, Owens G, Ok Y S, Park W K, Lee D B, Kwon S I. Decline in extractable antibiotics in manure-based composts during composting. Waste Management, 2012, 32: 110-116.
[48] Srinivasan P, Sarmah A K. Dissipation of sulfamethoxazole in pasture soils as affected by soil and environmental factors. Science of the Total Environment, 2014, 479, 284-291.
[49] Alvarez J A, Otero L, Lema J M, Omil F. The effect and fate of antibiotics during the anaerobic digestion of pig manure. Bioresource Technology, 2010, 101: 8581-8586.
[50] Mitchell S M, Ullman J L, Teel A L, Watts R J, Frear C. The effects of the antibiotics ampicillin, florfenicol, sulfamethazine,and tylosin on biogas production and their degradation efficiency during anaerobic digestion. Bioresource Technology, 2013, 149: 244-252.
[51] Guo J B, Ostermann A, Siemen, J, Dong R J, Clemens J. Short term effects of copper, sulfadiazine and difloxacin on the anaerobic. digestion of pig manure at low organic loading rates. Waste Management, 2012, 32:131-136.
[52] Sara P, Giuliana D I, Michele P, Maurizio C, Luca C, Fabrizio A. Effect of veterinary antibiotics on biogas and bio-methane production. International Biodeterioration & Biodegradation, 2013, 85: 205-209.
[53] Chen G X, He W W, Wang Y, Zou Y D, Liang J B, Liao X D, Wu Y B. Effect of different oxytetracycline addition methods on its degradation behavior in soil. Science of the Total Environment, 2014, 479-480: 241-246.
[54] Yu T H, Lin A Y C, Panchangam S C, Hong P K A, Yang P Y, Lin C F. Biodegradation and bio-sorption of antibiotics and non-steroidal anti- inflammatory drugs using immobilized cell process. Chemosphere, 2011, 84(9): 1216-1222.
[55] Tan F, Sun D, Gao J S, Zhao Q, Wang X C, Teng F, Quan X, Chen J W. Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution. Journal of Hazardous Materials, 2013, 244-245: 750-757.
[56] Zhang Z Y, Lan H C, Liu H J, Qu J H. Removal of tetracycline antibiotics from aqueous solution by amino-Fe(III) functionalized SBA15. Colloids and Surfaces A, 2015, 471: 133-138.
[57] Hopkins Z R, Blaney L. A novel approach to modeling the reaction kinetics of tetracycline antibiotics with aqueous ozone. Science of the Total Environment, 2014, 468-469: 337-344.
[58] Liu L, Liu C X, Zheng J Y, Huang X, Wang Z, Liu Y H, Zhu G F. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands. Chemosphere, 2013, 91(8): 1088-1093.
[59] Homem V, Santos L. Degradation and removal methods of antibiotics from aqueous matricese: A review. Journal of Environmental Management, 2011, 92(10): 2304-2347.
[60] Ma J, Yang M X, Yu F, Chen J H. Easy solid-phase synthesis of pH-insensitive heterogeneous CNTs/FeS Fenton-like catalyst for the removal of antibiotics from aqueous solution. Journal of Colloid Interface Science, 2015, 444: 24-32.
[61] Lü J M, Ma Y L, Chang X, Fan S B. Removal and removing mechanism of tetracycline residue from aqueous solution by using Cu-13X. Chemical Engineering Journal, 2015, 273: 247-253.
[62] Zhao C, Zhou Y, Ridder D J, Zhai J, Wei Y M, Deng H P. Advantages of TiO2/5A composite catalyst for photocatalytic degradation of antibiotic oxytetracycline in aqueous solution: Comparison between TiO2 and TiO2/5A composite system. Chemical Engineering Journal, 2014, 248: 280-289.
[63] Tan F, Sun D M, Gao J S, Zhao Q, Wang X C, Teng F, Quan X, Chen J W. Preparation of molecularly imprinted polymer nanoparticles for selective removal of fluoroquinolone antibiotics in aqueous solution. Journal of Hazardous Materials, 2013, 244– 245: 750-757.
[64] Dibner J J, Buttin P. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. Journal of Applied Pollution Research, 2002, 11: 453-463.
[65] Niewold T A. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis Pollution Science, 2007, 86: 605-609.
[66] Lienert J, Burki T, Escher B. Reducing micropollutants with source control: substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Science & Technology, 2012, 56: 87-96.
[67] Pradhan S K, Holopainen J K, Weisell J, Heinonen-Tanskif H. Human urine and wood ash as plant nutrients for red beet (Betavulgaris) cultivation: Impacts on yield quality. Journal of Agricultural and Food Chemistry, 2010, 58: 2034-2039.
[68] Pradhan S K, Holopainen J K, Heinonen-Tanski H. Stored human urine supplemented with wood ash as fertilizer in tomato (Solanum lycopersicum) cultivation and its impacts on fruit yield and quality. Journal of Agricultural and Food Chemistry, 2009, 57: 7612-7617. |
[1] | 陈朝喜,李宇涵,谭敏,汪露,黄志宏. 川西北高原牦牛和藏猪源大肠杆菌生物被膜表型、耐药基因、整合酶基因和毒力基因检测[J]. 中国农业科学, 2021, 54(23): 5144-5162. |
[2] | 李扬凡,邵美琪,刘畅,郭庆港,王培培,陈秀叶,苏振贺,马平. 解淀粉芽孢杆菌HMB33604的抑菌物质及对马铃薯黑痣病的防治效果[J]. 中国农业科学, 2021, 54(12): 2559-2569. |
[3] | 王小彬, 闫湘, 李秀英. 畜禽粪污厌氧发酵沼液农用之环境安全风险[J]. 中国农业科学, 2021, 54(1): 110-139. |
[4] | 杨君,楚品品,宋帅,蔡汝健,杨冬霞,卞志标,勾红潮,李艳,蒋智勇,李春玲,闫鹤. 副猪嗜血杆菌lpxM基因缺失株构建及生物学特性分析[J]. 中国农业科学, 2020, 53(16): 3394-3403. |
[5] | 周华飞,杨红福,姚克兵,庄义庆,束兆林,陈志谊. FliZ调控枯草芽孢杆菌Bs916生物膜形成 及其对水稻纹枯病的防治效果[J]. 中国农业科学, 2020, 53(1): 55-64. |
[6] | 章程,冯瑶,刘元望,成登苗,郑宇,李兆君. 菠菜土壤中典型抗生素的微生物降解及细菌多样性[J]. 中国农业科学, 2018, 51(19): 3736-3749. |
[7] | 成登苗,李兆君,张雪莲,冯瑶,张树清. 畜禽粪便中兽用抗生素削减方法的研究进展[J]. 中国农业科学, 2018, 51(17): 3335-3352. |
[8] | 向亚萍,周华飞,刘永锋,陈志谊. 解淀粉芽孢杆菌B1619脂肽类抗生素的分离鉴定及其对番茄枯萎病菌的抑制作用[J]. 中国农业科学, 2016, 49(15): 2935-2944. |
[9] | 向亚萍,陈志谊,罗楚平,周华飞,刘永锋. 芽孢杆菌的抑菌活性与其产脂肽类抗生素的相关性[J]. 中国农业科学, 2015, 48(20): 4064-4076. |
[10] | 姚婷1, 秦玉昌2, 吴宁鹏3, 彭丽3, 孙丹丹1, 谷旭1. 玉米DDGS中抗生素残留分析[J]. 中国农业科学, 2014, 47(5): 995-1005. |
[11] | 姚建华,牛德奎,李兆君,梁永超,张树清 . 抗生素土霉素对小麦根际土壤酶活性和微生物生物量的影响[J]. 中国农业科学, 2010, 43(4): 721-728 . |
[12] | 佟建明. 植物及微生物畜禽促生长饲料添加剂研究与开发[J]. 中国农业科学, 2007, 40(增刊): 3331-3335. |
[13] | 张树清,张夫道,刘秀梅,王玉军,张建峰. 高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J]. 中国农业科学, 2006, 39(02): 337-343 . |
[14] | 高学文,姚仕义,Huong Pham,Joachim Vater,王金生. 基因工程菌枯草芽孢杆菌GEB3产生的脂肽类抗生素及其生物活性研究[J]. 中国农业科学, 2003, 36(12): 1496-1501 . |
[15] | 李涛,解启英,佟恒敏,王振隆,乔桂林. 十种抗生素在马体内的代谢动力学[J]. 中国农业科学, 1990, 23(03): 76-79 . |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 304
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 220
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|