[1] |
赵星, 张嘉楠, 张一鸣, 金欣欣, 苏俏, 宋亚辉, 李玉荣, 王瑾. 花生籽仁蔗糖含量近红外光谱快速测定方法研究. 中国油料作物学报, 2024, 1(8): 1007-9084.
|
|
ZHAO X, ZHANG J N, ZHANG Y M, JIN X X, SU Q, SONG Y H, LI Y R, WANG J. Rapid determination of sucrose content in peanut kernel by near infrared spectroscopy. Chinese Journal of Oil Crop Sciences, 2024, 1(8): 1007-9084. (in Chinese)
|
[2] |
李振, 侯名语, 崔顺立, 陈淼, 刘盈茹, 李秀坤, 陈焕英, 刘立峰. 花生籽仁黄酮含量近红外分析检测方法. 光谱学与光谱分析, 2024, 44(4): 1112-1116.
|
|
LI Z, HOU M Y, CUI S L, CHEN M, LIU Y R, LI X K, CHEN H Y, LIU L F. Rapid detection method of flavonoid content in peanut seed based on near infrared technology. Spectroscopy and Spectral Analysis, 2024, 44(4): 1112-1116. (in Chinese)
|
[3] |
LIU W X, FENG Y, YU S H, FAN Z Q, LI X L, LI J Y, YIN H F. The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences, 2021, 22(23): 12824.
|
[4] |
林春草, 陈大伟, 戴均贵. 黄酮类化合物合成生物学研究进展. 药学学报, 2022, 57(5): 1322-1335.
|
|
LIN C C, CHEN D W, DAI J G. Advances of synthetic biology of flavonoids. Acta Pharmaceutica Sinica, 2022, 57(5): 1322-1335. (in Chinese)
|
[5] |
OUYANG L, LIU Y, YAO R N, HE D L, YAN L Y, CHEN Y N, HUAI D X, WANG Z H, YU B L, KANG Y P, JIANG H F, LEI Y, LIAO B S, WANG X. Genome-wide analysis of UDP- glycosyltransferase gene family and identification of a flavonoid 7-O-UGT (AhUGT75A) enhancing abiotic stress in peanut (Arachis hypogaea L.). BMC Plant Biology, 2023, 23(1): 626.
|
[6] |
HARUNA S A, LI H H, WEI W Y, GENG W H, LUO X F, ZAREEF M, YAO-SAY SOLOMON ADADE S, IVANE N M A, ISA A, CHEN Q S. Simultaneous quantification of total flavonoids and phenolic content in raw peanut seeds via NIR spectroscopy coupled with integrated algorithms. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 285: 121854.
|
[7] |
翟晨, 高曼, 栾鑫鑫, 钱承敬, 张巍巍, 史晓梅, 罗云敬, 吕朝政. 稻米加工副产品营养指标的近红外预测模型的建立. 饲料研究, 2024, 47(4): 126-131.
|
|
ZHAI C, GAO M, LUAN X X, QIAN C J, ZHANG W W, SHI X M, LUO Y J, LÜ C Z. Establishment of near infrared prediction model for nutritional indexes of rice processing by-products. Feed Research, 2024, 47(4): 126-131. (in Chinese)
|
[8] |
LITTARRU E, MODESTI M, ALFIERI G, PETTINELLI S, FLORIDIA G, BELLINCONTRO A, SANMARTIN C, BRIZZOLARA S. Optimising the winemaking process: NIR spectroscopy and e-nose analysis for the online monitoring of fermentation. Journal of the Science of Food and Agriculture, 2024, 105(3): 1465-1475.
|
[9] |
褚小立, 陈瀑, 李敬岩, 刘丹, 许育鹏. 近红外光谱分析技术的最新进展与展望. 分析测试学报, 2020, 39(10): 1181-1188.
|
|
CHU X L, CHEN P, LI J Y, LIU D, XU Y P. Progresses and perspectives of near infrared spectroscopy analytical technology. Journal of Instrumental Analysis, 2020, 39(10): 1181-1188. (in Chinese)
|
[10] |
邵晨阳, 赵一墨, 鹿莉莉, 齐星宇, 王子栋, 陈澍奇, 田野, 马跃龙. 近红外光谱快速分析技术的应用研究进展. 化学通报, 2024, 87(8): 898-912.
|
|
SHAO C Y, ZHAO Y M, LU L L, QI X Y, WANG Z D, CHEN S Q, TIAN Y, MA Y L. Progress in the application of near-infrared spectroscopy for rapid analysis. Chemistry, 2024, 87(8): 898-912. (in Chinese)
|
[11] |
魏子朝, 卢苗, 雷文晔, 王浩宇, 魏子渊, 高攀, 王东, 陈煦, 胡瑾. 一种融合叶绿素荧光技术与可见-近红外光谱的番茄幼苗热胁迫无损检测方法. 光谱学与光谱分析, 2024, 44(6): 1613-1619.
|
|
WEI Z C, LU M, LEI W Y, WANG H Y, WEI Z Y, GAO P, WANG D, CHEN X, HU J. Visible-NIR spectroscopy for detecting the severity of heat stress on tomato seedlings. Spectroscopy and Spectral Analysis, 2024, 44(6): 1613-1619. (in Chinese)
|
[12] |
张北举, 陈松树, 李魁印, 李鲁华, 徐如宏, 安畅, 熊富敏, 张燕, 董俐利, 任明见. 基于近红外光谱的高粱籽粒直链淀粉、支链淀粉含量检测模型的构建与应用. 中国农业科学, 2022, 55(1): 26-35. doi: 10.3864/j.issn.0578-1752.2022.01.003.
|
|
ZHANG B J, CHEN S S, LI K Y, LI L H, XU R H, AN C, XIONG F M, ZHANG Y, DONG L L, REN M J. Construction and application of detection model for amylose and amylopectin content in Sorghum grains based on near infrared spectroscopy. Scientia Agricultura Sinica, 2022, 55(1): 26-35. doi: 10.3864/j.issn.0578-1752.2022.01.003. (in Chinese)
|
[13] |
吕都, 唐健波, 姜太玲, 陈中爱, 潘牧. 基于近红外光谱技术快速检测稻谷水分含量. 食品与机械, 2022, 38(2): 51-56, 63.
|
|
LÜ D, TANG J B, JIANG T L, CHEN Z A, PAN M. Research on rapid prediction model of rice moisture content based on near infrared spectroscopy. Food & Machinery, 2022, 38(2): 51-56, 63. (in Chinese)
|
[14] |
刘孝全, 郝经文, 陈乃东, 张莉, 秦朝凤. 基于近红外光谱法的定量分析模型快速预测蕨菜中总黄酮的含量. 理化检验-化学分册, 2023, 59(11): 1271-1275.
|
|
LIU X Q, HAO J W, CHEN N D, ZHANG L, QIN C F. Rapid prediction of total flavonoids in Pteridium aquilinum by quantitative analysis model based on near infrared spectroscopy. Physical Testing and Chemical Analysis (Part B (Chemical Analysis)), 2023, 59(11): 1271-1275. (in Chinese)
|
[15] |
冯昱龙, 彭娟, 贺小刚, 于佳萍, 韩想, 楚刚辉. 基于近红外光谱快速测定雪菊的总黄酮含量. 化学试剂, 2022, 44(2): 279-284.
|
|
FENG Y L, PENG J, HE X G, YU J P, HAN X, CHU G H. Rapid determination of total flavonoids in snow Chrysanthemum based on near infrared spectroscopy. Chemical Reagents, 2022, 44(2): 279-284. (in Chinese)
|
[16] |
HAO J W, CHEN N D, FAN X X, WANG W T, JIANG H H, ZHANG Z Y, GONG R Z, RUAN X L, CHEN X. Rapid determination of total flavonoid content, xanthine oxidase inhibitory activities, and antioxidant activity in Prunus mume by near-infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2024, 246: 116164.
|
[17] |
纪红昌, 胡畅丽, 邱晓臣, 吴兰荣, 李晶晶, 李鑫, 李晓婷, 刘雨函, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁品质性状高通量表型分析模型的构建. 作物学报, 2023, 49(3): 869-876.
doi: 10.3724/SP.J.1006.2023.24030
|
|
JI H C, HU C L, QIU X C, WU L R, LI J J, LI X, LI X T, LIU Y H, TANG Y Y, ZHANG X J, WANG J S, QIAO L X. High-throughput phenotyping models for quality traits in peanut kernels. Acta Agronomica Sinica, 2023, 49(3): 869-876. (in Chinese)
|
[18] |
王志伟, 王秀贞, 马浪, 刘婷, 唐月异, 吴琪, 孙全喜, 王传堂. 花生籽仁食用感官品质近红外分析模型构建. 花生学报, 2022, 51(3): 77-82.
|
|
WANG Z W, WANG X Z, MA L, LIU T, TANG Y Y, WU Q, SUN Q X, WANG C T. Construction of near infrared spectroscopy models on prediction of eating quality of peanut kernel. Journal of Peanut Science, 2022, 51(3): 77-82. (in Chinese)
|
[19] |
李建国, 薛晓梦, 张照华, 王志慧, 晏立英, 陈玉宁, 万丽云, 康彦平, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用. 作物学报, 2019, 45(12): 1891-1898.
doi: 10.3724/SP.J.1006.2019.94016
|
|
LI J G, XUE X M, ZHANG Z H, WANG Z H, YAN L Y, CHEN Y N, WAN L Y, KANG Y P, HUAI D X, JIANG H F, LEI Y, LIAO B S. Establishment and applicant of near-infrared reflectance spectroscopy models for predicting main fatty acid contents of single seed in peanut. Acta Agronomica Sinica, 2019, 45(12): 1891-1898. (in Chinese)
|
[20] |
秦利, 刘华, 杜培, 董文召, 黄冰艳, 韩锁义, 张忠信, 齐飞艳, 张新友. 基于近红外光谱法的花生籽仁中蔗糖含量的测定. 中国油料作物学报, 2016, 38(5): 666-671.
doi: 10.7505/j.issn.1007-9084.2016.05.018
|
|
QIN L, LIU H, DU P, DONG W Z, HUANG B Y, HAN S Y, ZHANG Z X, QI F Y, ZHANG X Y. Determination of sucrose content in peanut seed kernel based on near infrared spectroscopy. Chinese Journal of Oil Crop Sciences, 2016, 38(5): 666-671. (in Chinese)
doi: 10.7505/j.issn.1007-9084.2016.05.018
|
[21] |
陈淼, 侯名语, 崔顺立, 李振, 穆国俊, 刘盈茹, 李秀坤, 刘立峰. 不同种皮颜色花生糖含量近红外模型的构建. 光谱学与光谱分析, 2022, 42(9): 2896-2902.
|
|
CHEN M, HOU M Y, CUI S L, LI Z, MU G J, LIU Y R, LI X K, LIU L F. Construction of near-infrared model of peanut sugar content in different seed coat colors. Spectroscopy and Spectral Analysis, 2022, 42(9): 2896-2902. (in Chinese)
|
[22] |
姚鑫淼, 卢淑雯, 解铁民, 孟庆虹, 周野, 张瑞英, 苏萍, 马永华, 李宛. 玉米子粒颜色对近红外模型预测其淀粉含量的影响. 玉米科学, 2013, 21(4): 153-156.
|
|
YAO X M, LU S W, XIE T M, MENG Q H, ZHOU Y, ZHANG R Y, SU P, MA Y H, LI W. Effect of kernel color on corn starch content by near-infrared transmittance spectroscopy. Journal of Maize Sciences, 2013, 21(4): 153-156. (in Chinese)
|
[23] |
吴紫萱, 薛其勤, 杨会, 刘风珍. 花生种皮颜色研究进展. 山东农业科学, 2022, 54(1): 152-156.
|
|
WU Z X, XUE Q Q, YANG H, LIU F Z. Research progress on testa color of peanut. Shandong Agricultural Sciences, 2022, 54(1): 152-156. (in Chinese)
|
[24] |
陈庭木, 方兆伟, 王宝祥, 刘艳, 邢运高, 徐大勇. 高黄酮水稻品种资源的鉴定与筛选. 中国稻米, 2020, 26(2): 41-43.
doi: 10.3969/j.issn.1006-8082.2020.02.010
|
|
CHEN T M, FANG Z W, WANG B X, LIU Y, XING Y G, XU D Y. Identification and screening of high flavonoid rice variety resources. China Rice, 2020, 26(2): 41-43. (in Chinese)
doi: 10.3969/j.issn.1006-8082.2020.02.010
|
[25] |
张智猛, 万书波, 戴良香, 陈静, 苗华荣. 不同类型花生品种籽仁部位抗氧化能力及功能成分研究. 食品与生物技术学报, 2009, 28(6): 741-747.
|
|
ZHANG Z M, WAN S B, DAI L X, CHEN J, MIAO H R. Study on the anti-oxidation function and functional compositions in parts of kernel of different peanut varieties. Journal of Food Science and Biotechnology, 2009, 28(6): 741-747. (in Chinese)
|
[26] |
侯名语, 崔顺立, 穆国俊, 杨鑫雷, 刘立峰. 花生种子黄酮及多酚含量的生态差异分析. 华北农学报, 2017, 32(3): 155-160.
doi: 10.7668/hbnxb.2017.03.024
|
|
HOU M Y, CUI S L, MU G J, YANG X L, LIU L F. Ecologic difference of flavonoid and polyphenol content in peanut seeds. Acta Agriculturae Boreali-Sinica, 2017, 32(3): 155-160. (in Chinese)
doi: 10.7668/hbnxb.2017.03.024
|
[27] |
侯名语, 胡晓辉, 陈静, 刘立峰. 花生籽仁黄酮含量遗传模式分析. 花生学报, 2016, 45(4): 25-29.
|
|
HOU M Y, HU X H, CHEN J, LIU L F. Inheritance analysis of flavonoid content in peanut seed. Journal of Peanut Science, 2016, 45(4): 25-29. (in Chinese)
|
[28] |
WANG M L, CHEN C Y, TONNIS B, BARKLEY N A, PINNOW D L, PITTMAN R N, DAVIS J, HOLBROOK C C, STALKER H T, PEDERSON G A. Oil, fatty acid, flavonoid, and resveratrol content variability and FAD2A functional SNP genotypes in the U.S. peanut mini-core collection. Journal of Agricultural and Food Chemistry, 2013, 61(11): 2875-2882.
doi: 10.1021/jf305208e
pmid: 23379758
|
[29] |
HOU M Y, MU G J, ZHANG Y J, CUI S L, YANG X L, LIU L F. Evaluation of total flavonoid content and analysis of related EST-SSR in Chinese peanut germplasm. Crop Breeding and Applied Biotechnology, 2017, 17(3): 221-227.
|
[30] |
纪红昌, 邱晓臣, 柳文浩, 胡畅丽, 孔铭, 胡晓辉, 黄建斌, 杨雪, 唐艳艳, 张晓军, 王晶珊, 乔利仙. 花生籽仁含油量近红外模型的构建及其应用. 中国油料作物学报, 2022, 44(5): 1089-1097.
doi: 10.19802/j.issn.1007-9084.2021205
|
|
JI H C, QIU X C, LIU W H, HU C L, KONG M, HU X H, HUANG J B, YANG X, TANG Y Y, ZHANG X J, WANG J S, QIAO L X. Construction and application of near infrared ray model for oil content prediction in peanut kernel. Chinese Journal of Oil Crop Sciences, 2022, 44(5): 1089-1097. (in Chinese)
|
[31] |
胡美玲, 郅晨阳, 薛晓梦, 吴洁, 王瑾, 晏立英, 王欣, 陈玉宁, 康彦平, 王志慧, 淮东欣, 姜慧芳, 雷永, 廖伯寿. 单粒花生蔗糖含量近红外预测模型的建立. 作物学报, 2023, 49(9): 2498-2504.
doi: 10.3724/SP.J.1006.2023.24241
|
|
HU M L, ZHI C Y, XUE X M, WU J, WANG J, YAN L Y, WANG X, CHEN Y N, KANG Y P, WANG Z H, HUAI D X, JIANG H F, LEI Y, LIAO B S. Establishment of near-infrared reflectance spectroscopy model for predicting sucrose content of single seed in peanut. Acta Agronomica Sinica, 2023, 49(9): 2498-2504. (in Chinese)
|