[1] |
YRUELA I. Copper in plants: Acquisition, transport and interactions. Functional Plant Biology, 2009, 36(5): 409-430.
doi: 10.1071/FP08288
pmid: 32688656
|
[2] |
LI L, ZHANG K N, GILL R A, ISLAM F, FAROOQ M A, WANG J, ZHOU W J. Ecotoxicological and interactive effects of copper and chromium on physiochemical, ultrastructural, and molecular profiling in Brassica napus L. BioMed Research International, 2018, 2018: 9248123.
|
[3] |
MARSHALL R S, VIERSTRA R D. Autophagy: The master of bulk and selective recycling. Annual Review of Plant Biology, 2018, 69: 173-208.
doi: 10.1146/annurev-arplant-042817-040606
pmid: 29539270
|
[4] |
CAO J J, ZHOU J. Functions of plant autophagy and its applications in agriculture. Scientia Sinica Vitae, 2023, 53(3): 304-321.
|
[5] |
MASCLAUX-DAUBRESSE C, CHEN Q W, HAVÉ M. Regulation of nutrient recycling via autophagy. Current Opinion in Plant Biology, 2017, 39: 8-17.
|
[6] |
AHMAD P, JALEEL C A, SALEM M A, NABI G, SHARMA S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 2010, 30(3): 161-175.
doi: 10.3109/07388550903524243
pmid: 20214435
|
[7] |
GENG A J, WANG X, WU L S, WANG F H, WU Z C, YANG H, CHEN Y, WEN D, LIU X X. Silicon improves growth and alleviates oxidative stress in rice seedlings (Oryza sativa L.)by strengthening antioxidant defense and enhancing protein metabolism under arsanilic acid exposure. Ecotoxicology and Environmental Safety, 2018, 158: 266-273.
|
[8] |
NIETO-TORRES J L, LEIDAL A M, DEBNATH J, HANSEN M. Beyond autophagy: The expanding roles of ATG8 proteins. Trends in Biochemical Sciences, 2021, 46(8): 673-686.
|
[9] |
CHEN X G, HE Y X, WU Z, LU X K, YIN Z J, ZHAO L J, HUANG H, MENG Y, FAN Y P, GUO L X, WANG D L, WANG J J, WANG S, CHEN C, WANG X P, YE W W. Systematic analysis and expression of Gossypium ATG8 family reveals the roles of GhATG8f responding to salt stress in cotton. Plant Cell Reports, 2024, 43(2): 58.
|
[10] |
JIA X, JIA X M, LI T T, WANG Y, SUN X, HUO L Q, WANG P, CHE R M, GONG X Q, MA F W. MdATG5a induces drought tolerance by improving the antioxidant defenses and promoting starch degradation in apple. Plant Science, 2021, 312: 111052.
|
[11] |
WANG P, SUN X, JIA X, WANG N, GONG X Q, MA F W. Characterization of an autophagy-related gene MdATG8i from apple. Frontiers in Plant Science, 2016, 7: 720.
|
[12] |
LI W W, CHEN M, ZHONG L, LIU J M, XU Z S, LI L C, ZHOU Y B, GUO C H, MA Y Z. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.)confers tolerance to both nitrogen starvation and drought stress in Arabidopsis. Biochemical and Biophysical Research Communications, 2015, 468(4): 800-806.
|
[13] |
LI B, LIU G Y, WANG Y Q, WEI Y X, SHI H T. Overexpression of banana ATG8f modulates drought stress resistance in Arabidopsis. Biomolecules, 2019, 9(12): 814.
|
[14] |
CHEN M X, FANG X, WANG Z C, SHANGGUAN L F, LIU T H, CHEN C, LIU Z J, GE M Q, ZHANG C, ZHENG T, FANG J G. Multi-omics analyses on the response mechanisms of ‘Shine Muscat’ grapevine to low degree of excess copper stress (Low-ECS). Environmental Pollution, 2021, 286: 117278.
|
[15] |
陈梦霞. 葡萄叶片轻度铜胁迫调控机制研究与VvATG8f基因的功能分析[D]. 南京: 南京农业大学, 2021.
|
|
CHEN M X. Study on the regulation mechanism of mild copper stress in grape leaves and functional analysis of VvATG8f[D]. Nanjing: Nanjing Agricultural University, 2021. (in Chinese)
|
[16] |
CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16(6): 735-743.
|
[17] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
|
[18] |
熊桂红, 胡昱颛, 吴祖建. 利用酵母双杂交系统筛选本氏烟中与RGSV P5互作的蛋白. 江西农业大学学报, 2023, 45(2): 404-412.
|
|
XIONG G H, HU Y Z, WU Z J. Screening of RGSV P5 interactive proteins in Nicotiana benthamiana by two-hybrid system of yeast. Acta Agriculturae Universitatis Jiangxiensis, 2023, 45(2): 404-412. (in Chinese)
|
[19] |
SUN X, WANG P, JIA X, HUO L Q, CHE R M, MA F W. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnology Journal, 2018, 16(2): 545-557.
|
[20] |
BASSHAM D C, LAPORTE M, MARTY F, MORIYASU Y, OHSUMI Y, OLSEN L J, YOSHIMOTO K. Autophagy in development and stress responses of plants. Autophagy, 2006, 2(1): 2-11.
doi: 10.4161/auto.2092
pmid: 16874030
|
[21] |
HAYWARD A P, DINESH-KUMAR S P. What can plant autophagy do for an innate immune response? Annual Review of Phytopathology, 2011, 49: 557-576.
doi: 10.1146/annurev-phyto-072910-095333
pmid: 21370973
|
[22] |
NAKATOGAWA H, ICHIMURA Y, OHSUMI Y. Atg8, a ubiquitin- like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 2007, 130(1): 165-178.
|
[23] |
XIE Z P, NAIR U, KLIONSKY D J. Atg 8 controls phagophore expansion during autophagosome formation. Molecular Biology of the Cell, 2008, 19(8): 3290-3298.
|
[24] |
冷翔鹏. 葡萄应答铜胁迫的分子机理研究[D]. 南京: 南京农业大学, 2015.
|
|
LENG X P. Study on the molecular mechanism of grape in response to copper stress[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
|
[25] |
赵慧, 赵一博, 辛翠花, 郭江波. 过表达细胞自噬基因ATG8f对植物响应镉胁迫的影响. 分子植物育种, 2017, 15(8): 3042-3045.
|
|
ZHAO H, ZHAO Y B, XIN C H, GUO J B. Impacts on cadmium stress susceptibility in plants overexpressing autophagy-related gene ATG8f. Molecular Plant Breeding, 2017, 15(8): 3042-3045. (in Chinese)
|
[26] |
PATEL S, CAPLAN J, DINESH-KUMAR S P. Autophagy in the control of programmed cell death. Current Opinion in Plant Biology, 2006, 9(4): 391-396.
pmid: 16713731
|
[27] |
肖旭峰, 李猛, 司舒成, 范淑英, 吴才君, 张明. 基于转录组测序的Cd胁迫下芹菜细胞自噬相关基因的筛选. 生物工程学报, 2020, 36(8): 1610-1619.
|
|
XIAO X F, LI M, SI S C, FAN S Y, WU C J, ZHANG M. Effect of Cd on autophagy-related genes of celery. Chinese Journal of Biotechnology, 2020, 36(8): 1610-1619. (in Chinese)
|
[28] |
田丽娟. 小麦ATG8基因在植物抵抗逆境胁迫中的功能研究[D]. 保定: 河北农业大学, 2014.
|
|
TIAN L J. Study on the function of wheat TaATG8 gene in plant resistance to stress[D]. Baoding: Hebei Agricultural University, 2014. (in Chinese)
|
[29] |
SUNKAR R, LI Y F, JAGADEESWARAN G. Functions of microRNAs in plant stress responses. Trends in Plant Science, 2012, 17(4): 196-203.
doi: 10.1016/j.tplants.2012.01.010
pmid: 22365280
|
[30] |
JING X S, HOU P C, LU Y J, DENG S R, LI N Y, ZHAO R, SUN J, WANG Y, HAN Y S, LANG T, DING M Q, SHEN X, CHEN S L. Overexpression of copper/zinc superoxide dismutase from mangrove Kandelia candel in tobacco enhances salinity tolerance by the reduction of reactive oxygen species in chloroplast. Frontiers in Plant Science, 2015, 6: 23.
|
[31] |
WU J H, ZHANG J, LI X, XU J J, WANG L. Identification and characterization of a PutCu/Zn-SOD gene from Puccinellia tenuiflora (Turcz.)Scribn. et Merr. Plant Growth Regulation, 2016, 79(1): 55-64.
|
[32] |
PARK S Y, GRABAU E. Bypassing miRNA-mediated gene regulation under drought stress: Alternative splicing affects CSD1 gene expression. Plant Molecular Biology, 2017, 95(3): 243-252.
|
[33] |
管彬, 周竹青. 细胞自噬在拟南芥应答镉胁迫中的作用. 江苏农业科学, 2019, 47(14): 90-95.
|
|
GUAN B, ZHOU Z Q. Role of autophagy in response to cadmium stress in Arabidopsis thaliana. Jiangsu Agricultural Sciences, 2019, 47(14): 90-95. (in Chinese)
|
[34] |
XIA J X, WANG Z C, LIU S Y, FANG X, HAKEEM A, FANG J G, SHANGGUAN L F. VvATG6 contributes to copper stress tolerance by enhancing the antioxidant ability in transgenic grape calli. Physiology and Molecular Biology of Plants, 2024, 30(1): 137-152.
|
[35] |
张静娴, 刘军, 周晓慧, 刘松瑜, 庄勇, 杨艳. 茄子自噬相关基因ATG8家族鉴定及表达分析. 西北植物学报, 2023, 43(10): 1621-1628.
|
|
ZHANG J X, LIU J, ZHOU X H, LIU S Y, ZHUANG Y, YANG Y. Identification and expression analysis of autophagy-related gene ATG8 family in Solanum melongena L.. Acta Botanica Boreali- Occidentalia Sinica, 2023, 43(10): 1621-1628. (in Chinese)
|
[36] |
GARCIA-MAQUILON I, COEGO A, LOZANO-JUSTE J, MESSERER M, DE OLLAS C, JULIAN J, RUIZ-PARTIDA R, PIZZIO G, BELDA-PALAZÓN B, GOMEZ-CADENAS A, MAYER K F X, GEIGER D, ALQURAISHI S A, ALREFAEI A F, ACHE P, HEDRICH R, PYL8 ABA receptors of Phoenix dactylifera play a crucial role in response to abiotic stress and are stabilized by ABA. Journal of Experimental Botany, 2021, 72(2): 757-774.
|
[37] |
XIA J X, CHEN C, LIU T H, LIU C H, LIU S Y, FANG J G, SHANGGUAN L F. Germplasm resource evaluation and the underlying regulatory mechanisms of the differential copper stress tolerance among Vitis species. Environmental and Experimental Botany, 2023, 206: 105198.
|
[38] |
WANG G L, REN X Q, LIU J X, YANG F, WANG Y P, XIONG A S. Transcript profiling reveals an important role of cell wall remodeling and hormone signaling under salt stress in garlic. Plant Physiology and Biochemistry, 2019, 135: 87-98.
|