[1] |
陈浩, 王纯洁, 斯木吉德, 敖日格乐. 牛肉品质及其影响因素研究进展. 动物营养学报, 2021, 33(2): 669-678.
doi: 10.3969/j.issn.1006-267x.2021.02.008
|
|
CHEN H, WANG C J, SIMUJIDE,AORIGELE. Research progress of beef quality and its influencing factors. Chinese Journal of Animal Nutrition, 2021, 33(2): 669-678. (in Chinese)
|
[2] |
王佳佳, 邓源喜, 胡婉茹, 杨宁宁, 王丹丹, 丁欢, 姚宝琴. 牛肉的营养价值及其嫩化技术研究进展. 安徽农学通报, 2019, 25(13): 140-141, 144.
|
|
WANG J J, DENG Y X, HU W R, YANG N N, WANG D D, DING H, YAO B Q. Nutritional value of beef and research progress of beef tendering technology. Anhui Agricultural Science Bulletin, 2019, 25(13): 140-141, 144. (in Chinese)
|
[3] |
郑梦奇, 石放雄. 生长猪肌间脂肪组织发育的生物学特性及其影响因素. 猪业科学, 2011, 28(10): 24-26.
|
|
ZHENG M Q, SHI F X. Biological characteristics and influencing factors of adipose tissue development in growing pig muscle. Swine Industry Science, 2011, 28(10): 24-26. (in Chinese)
|
[4] |
胡佩青, 李卫国. 脂肪细胞与代谢型肥胖症概述. 生物学教学, 2019, 44(6): 2-4.
|
|
HU P Q, LI W G. A brief summary of adipocyte and metabolic obesity. Biology Teaching, 2019, 44(6): 2-4. (in Chinese)
|
[5] |
庞卫军, 李影, 卢荣华, 白亮, 吴江维, 杨公社. 脂肪细胞分化过程中的分子事件. 细胞生物学杂志, 2005, 27(5): 497-500.
|
|
PANG W J, LI Y, LU R H, BAI L, WU J W, YANG G S. Molecular events during adipocyte differentiation. Chinese Journal of Cell Biology, 2005, 27(5): 497-500. (in Chinese)
|
[6] |
GUO W J, KECKESOVA Z, DONAHER J L, SHIBUE T, TISCHLER V, REINHARDT F, ITZKOVITZ S, NOSKE A, ZÜRRER-HÄRDI U, BELL G, et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell, 2012, 148(5): 1015-1028.
doi: 10.1016/j.cell.2012.02.008
pmid: 22385965
|
[7] |
KIM N H, CHA Y H, LEE J, LEE S H, YANG J H, YUN J S, CHO E S, ZHANG X L, NAM M, KIM N, et al. Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress. Nature Communications, 2017, 8: 14374.
doi: 10.1038/ncomms14374
pmid: 28176759
|
[8] |
QIN K W, YU S H, LIU Y, GUO R T, GUO S Y, FEI J J, WANG Y M, JIA K Y, XU Z Q, CHEN H, et al. USP36 stabilizes nucleolar Snail1 to promote ribosome biogenesis and cancer cell survival upon ribotoxic stress. Nature Communications, 2023, 14: 6473.
doi: 10.1038/s41467-023-42257-8
pmid: 37833415
|
[9] |
PUJALS M, MAYANS C, BELLIO C, MÉNDEZ O, GRECO E, FASANI R, ALEMANY-CHAVARRIA M, ZAMORA E, PADILLA L, MITJANS F, et al. RAGE/SNAIL1 signaling drives epithelial- mesenchymal plasticity in metastatic triple-negative breast cancer. Oncogene, 2023, 42: 2610-2628.
|
[10] |
ISHAY-RONEN D, DIEPENBRUCK M, KALATHUR R K R, SUGIYAMA N, TIEDE S, IVANEK R, BANTUGG, MORINI M F, WANG J, HESS C, CHRISTOFORI G. Gain fat-lose metastasis: converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell, 2019, 35(1): 17-32.
|
[11] |
KWAPISZ O, GÓRKA J, KORLATOWICZ A, KOTLINOWSKI J, WALIGÓRSKA A, MARONA P, PYDYN N, DOBRUCKI J W, JURA J, MIEKUS K. Fatty acids and a high-fat diet induce epithelial- mesenchymal transition by activating TGFβ and β-catenin in liver cells. International Journal of Molecular Sciences, 2021, 22(3): 1272.
|
[12] |
CHAVKIN N W, VIPPA T, JUNG C, MCDONNELL S, HIRSCHI K K, GOKCE N, WALSH K. Obesity accelerates endothelial-to- mesenchymal transition in adipose tissues of mice and humans. Frontiers in Cardiovascular Medicine, 2023, 10: 1264479.
|
[13] |
LIU Y, BAO H, WANG W D, LIM H Y. Cardiac Snail family of transcription factors directs systemic lipid metabolism in Drosophila. PLoS Genetics, 2019, 15(11): e1008487.
|
[14] |
PALANI N P, HORVATH C, TIMSHEL P N, FOLKERTSMA P, GRØNNING A G B, HENRIKSEN T I, PEIJS L, JENSEN V H, SUN W F, JESPERSEN N Z, et al. Adipogenic and SWAT cells separate from a common progenitor in human brown and white adipose depots. Nature Metabolism, 2023, 5: 996-1013.
doi: 10.1038/s42255-023-00820-z
pmid: 37337126
|
[15] |
GUBELMANN C, SCHWALIE P C, RAGHAV S K, RÖDER E, DELESSA T, KIEHLMANN E, WASZAK S M, CORSINOTTI A, UDIN G, HOLCOMBE W, et al. Identification of the transcription factor ZEB 1 as a central component of the adipogenic gene regulatory network. eLife, 2014, 3: e03346.
|
[16] |
PELÁEZ-GARCÍA A, BARDERAS R, BATLLE R, VIÑAS-CASTELLS R, BARTOLOMÉ R A, TORRES S, MENDES M, LOPEZ-LUCENDO M, MAZZOLINI R, BONILLA F, et al. A proteomic analysis reveals that snail regulates the expression of the nuclear orphan receptor nuclear receptor subfamily 2 group F member 6 (Nr2f6) and interleukin 17 (IL-17) to inhibit adipocyte differentiation. Molecular & Cellular Proteomics, 2015, 14(2): 303-315.
|
[17] |
SUN C X, JIANG L, LIU Y, SHEN H, WEISS S J, ZHOU Y F, RUI L Y. Adipose Snail1 regulates lipolysis and lipid partitioning by suppressing adipose triacylglycerol lipase expression. Cell Reports, 2016, 17(8): 2015-2027.
doi: S2211-1247(16)31505-4
pmid: 27851965
|
[18] |
|
|
YANG X R, MA X H, DU J W, ZAN L S. Expression pattern of m 6A methylase-related genes in bovine skeletal muscle myogenesis. Scientia Agricultura Sinica, 2023, 56(1): 165-178. doi: 10.3864/j.issn. 0578-1752.2023.01.013. (in Chinese)
|
[19] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408.
|
[20] |
|
|
TIAN Y, WANG L, LONG F, ZAN L S, CHENG G. Codon optimization of human lysozyme and high-efficiency expression in bovine mammary cells. Scientia Agricultura Sinica, 2020, 53(18): 3805-3817. doi: 10.3864/j.issn.0578-1752.2020.18.015. (in Chinese)
|
[21] |
DÍAZ V M, VIÑAS-CASTELLS R, GARCÍA DE HERREROS A. Regulation of the protein stability of EMT transcription factors. Cell Adhesion & Migration, 2014, 8(4): 418-428.
|
[22] |
BAULIDA J, DÍAZ V M, GARCÍA DE HERREROS A. Snail1: A transcriptional factor controlled at multiple levels. Journal of Clinical Medicine, 2019, 8(6): 757.
|
[23] |
XU Y, LEE S H, KIM H S, KIM N H, PIAO S, PARK S H, JUNG Y S, YOOK J I, PARK B J, HA N C. Role of CK1 in GSK3β-mediated phosphorylation and degradation of Snail. Oncogene, 2010, 29(21): 3124-3133.
|
[24] |
QI J N, LI T, BIAN H J, LI F F, JU Y, GAO S S, SU J R, REN W H, QIN C Y. SNAI1 promotes the development of HCC through the enhancement of proliferation and inhibition of apoptosis. FEBS Open Bio, 2016, 6(4): 326-337.
doi: 10.1002/2211-5463.12043
pmid: 27239445
|
[25] |
VEGA S, MORALES A V, OCAÑA O H, VALDÉS F, FABREGAT I, NIETO M A. Snail blocks the cell cycle and confers resistance to cell death. Genes & Development, 2004, 18(10): 1131-1143.
|
[26] |
张文涛, 刘晨阳, 朱炳霖, 柳丽, 田媛, 姚宇航, 成功. Snail1对牛脂肪细胞增殖分化影响及作用机制的研究. 畜牧兽医学报, 2023, 54(12): 5008-5019.
doi: 10.11843/j.issn.0366-6964.2023.12.012
|
|
ZHANG W T, LIU C Y, ZHU B L, LIU L, TIAN Y, YAO Y H, CHENG G. Study on the effects and mechanisms of Snail1 on proliferation and differentiation of bovine adipocytes. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5008-5019. (in Chinese)
|
[27] |
ALETAHA M, MANSOORI B, MOHAMMADI A, FAZELI M, BARADARAN B. The effect of Snail1 gene silencing by siRNA in metastatic breast cancer cell lines. Iranian Journal of Public Health, 2017, 46(5): 659-670.
pmid: 28560197
|
[28] |
ZHU L F, HU Y, YANG C C, XU X H, NING T Y, WANG Z L, YE J H, LIU L K. Snail overexpression induces an epithelial to mesenchymal transition and cancer stem cell-like properties in SCC9 cells. Laboratory Investigation; a Journal of Technical Methods and Pathology, 2012, 92(5): 744-752.
|
[29] |
SCHUHWERK H, KLEEMANN J, GUPTA P, VAN ROEY R, ARMSTARK I, KREILEDER M, FELDKER N, RAMESH V, HAJJAJ Y, FUCHS K, et al. The EMT transcription factor ZEB 1 governs a fitness-promoting but vulnerable DNA replication stress response. Cell Reports, 2022, 41(11): 111819.
|
[30] |
PAUL M C, SCHNEEWEIS C, FALCOMATÀ C, SHAN C, ROSSMEISL D, KOUTSOULI S, KLEMENT C, ZUKOWSKA M, WIDHOLZ S A, JESINGHAUS M, et al. Non-canonical functions of SNAIL drive context-specific cancer progression. Nature Communications, 2023, 14: 1201.
doi: 10.1038/s41467-023-36505-0
pmid: 36882420
|
[31] |
WESTON W A, BARR A R. A cell cycle centric view of tumour dormancy. British Journal of Cancer, 2023, 129: 1535-1545.
doi: 10.1038/s41416-023-02401-z
pmid: 37608096
|
[32] |
SCHUHWERK H, BRABLETZ T. Mutual regulation of TGFβ- induced oncogenic EMT, cell cycle progression and the DDR. Seminars in Cancer Biology, 2023, 97: 86-103.
|