中国农业科学 ›› 2023, Vol. 56 ›› Issue (2): 345-356.doi: 10.3864/j.issn.0578-1752.2023.02.011
刘针杉1,2(),涂红霞1,2,周荆婷1,2,马艳1,2,柴久凤1,2,王旨意1,2,杨鹏飞1,2,杨小芹2,Kumail Abbas1,2,王浩1,王燕1,2,王小蓉1,2(
)
收稿日期:
2022-03-22
接受日期:
2022-07-26
出版日期:
2023-01-16
发布日期:
2023-02-07
通讯作者:
王小蓉,E-mail:作者简介:
刘针杉,E-mail:基金资助:
LIU ZhenShan1,2(),TU HongXia1,2,ZHOU JingTing1,2,MA Yan1,2,CHAI JiuFeng1,2,WANG ZhiYi1,2,YANG PengFei1,2,YANG XiaoQin2,Kumail Abbas1,2,WANG Hao1,WANG Yan1,2,WANG XiaoRong1,2(
)
Received:
2022-03-22
Accepted:
2022-07-26
Online:
2023-01-16
Published:
2023-02-07
摘要:
【目的】通过观测分析中国樱桃地方种质‘南早红’(早熟,橙红)和‘红妃’(紫红,综合性状优良)杂交F1代果实主要性状的遗传表现,探究果实主要性状遗传规律,为优异性状基因挖掘奠定工作基础,也为新品种选育和杂交亲本选择与选配提供参考依据。【方法】田间调查和测试分析‘南早红’(NZH)和‘红妃’(HF)正、反交F1代群体(n=226)果实大小(单果质量、果实纵径、横径、侧径)、风味(可溶性固形物、可溶性糖、可滴定酸)、颜色(果实花色苷含量)、形状(果形指数)、果实生育期、果柄长度等17个性状的遗传变异,分析其遗传倾向并预测遗传模式。【结果】正交(‘南早红’ב红妃’)和反交(‘红妃’ב南早红’)F1群体单果质量分离广泛,分别为2.59—7.46和2.45—6.48 g,但平均单果质量(4.30 g、4.05 g)均小于中亲值(4.58 g)。可溶性固形物和可溶性糖含量杂种优势明显,前者正、反交群体均值分别为14.55%和14.51%,高于亲本HF(12.97%)和NZH(11.36%),超高亲率分别达78.52%和76.09%;可滴定酸在正、反交群体中的均值(0.67 g/100 mL、0.59 g/100 mL)略低于中亲值(0.63 g/100 mL),低低亲率为47.92%和41.94%。F1果皮颜色也呈现连续变异,包括橙红、红色、紫红和黑紫等类型,以红色为主。果实花色苷含量变异较大,分布范围分别为3.12—112.51和1.80—79.94 mg·kg-1。果实生育期在正反交F1群体中存在差异,正交的比反交的短2 d。果柄长度表现为超亲遗传,超高亲率分别为49.25%和43.33%。遗传模型预测表明,正、反交11个果实性状最适遗传模型的主基因数目完全一致,果实纵径和果实生育期为1对主基因,其他性状均为2对主基因。【结论】中国樱桃杂交F1代果实主要性状均为多基因控制连续分布的数量性状,其中单果质量、果实纵径、横径、侧径、可滴定酸、花色苷含量呈变小的趋势,可溶性固形物、可溶性糖和果柄长度呈增大的趋势。
刘针杉, 涂红霞, 周荆婷, 马艳, 柴久凤, 王旨意, 杨鹏飞, 杨小芹, Kumail Abbas, 王浩, 王燕, 王小蓉. 中国樱桃正反交F1代果实主要性状的遗传分析[J]. 中国农业科学, 2023, 56(2): 345-356.
LIU ZhenShan, TU HongXia, ZHOU JingTing, MA Yan, CHAI JiuFeng, WANG ZhiYi, YANG PengFei, YANG XiaoQin, Kumail Abbas, WANG Hao, WANG Yan, WANG XiaoRong. Genetic Analysis of Fruits Characters in Reciprocal Cross Progenies of Chinese Cherry[J]. Scientia Agricultura Sinica, 2023, 56(2): 345-356.
表1
中国樱桃‘南早红’和‘红妃’正、反交F1群体果实性状的遗传变异"
性状 Trait | 组合 Cross | 亲本 Parent | 子代F1 progeny | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NZH | HF | MP | 均值 Average | 范围 Range | CV (%) | Hb2 (%) | Ta (%) | H (%) | HH (%) | HM (%) | LL (%) | K | SK | ||
单果质量 Fruit weight (g) | NZH×HF | 3.81±0.55 | 5.35±0.38 | 4.58 | 4.30 | 2.59-7.46 | 21.46 | 73.92 | 93.82 | -6.18 | 10.37 | 28.89 | 34.81 | 1.02 | 0.93 |
HF×NZH | 4.05 | 2.45-6.48 | 18.89 | 62.18 | 88.51 | -11.49 | 4.40 | 28.57 | 40.66 | 0.10 | 0.33 | ||||
果实纵径 Longitudinal diameter (mm) | NZH×HF | 17.36±0.82 | 21.88±1.16 | 19.62 | 19.32 | 15.99-24.66 | 8.83 | 65.37 | 98.50 | -1.50 | 8.89 | 37.04 | 13.33 | 0.38 | 0.56 |
HF×NZH | 18.97 | 16.15-23.82 | 7.65 | 52.11 | 96.69 | -3.31 | 4.40 | 27.47 | 10.99 | 1.22 | 0.73 | ||||
果实横径 Transverse diameter (mm) | NZH×HF | 18.63±0.89 | 21.45±0.60 | 20.04 | 19.81 | 15.59-23.83 | 7.63 | 74.12 | 98.86 | -1.14 | 14.07 | 42.22 | 21.48 | 0.16 | 0.52 |
HF×NZH | 19.49 | 16.32-22.67 | 7.06 | 68.70 | 97.24 | -2.76 | 7.69 | 35.16 | 25.27 | -0.35 | 0.01 | ||||
果实侧径 Lateral diameter (mm) | NZH×HF | 17.03±1.38 | 18.77±0.63 | 17.90 | 17.22 | 14.35-21.07 | 7.71 | 35.78 | 96.20 | -3.80 | 11.85 | 28.89 | 48.15 | 0.22 | 0.37 |
HF×NZH | 17.04 | 14.12-20.44 | 7.60 | 32.52 | 95.20 | -4.80 | 9.89 | 29.67 | 47.25 | -0.33 | 0.05 | ||||
可溶性固形物 Total soluble solid (%) | NZH×HF | 11.36±0.82 | 12.97±0.90 | 12.17 | 14.55 | 8.10-19.70 | 14.40 | 83.11 | 119.61 | 19.61 | 78.52 | 90.37 | 5.93 | 0.17 | 0.11 |
HF×NZH | 14.51 | 9.20-23.20 | 15.19 | 84.73 | 119.28 | 19.28 | 76.09 | 88.04 | 4.35 | 2.31 | 0.76 | ||||
可溶性糖 Soluble sugar (g·kg-1) | NZH×HF | 92.35±1.70 | 117.27±0.91 | 104.81 | 116.07 | 56.57-178.92 | 21.36 | 99.78 | 109.42 | 9.42 | 41.56 | 68.83 | 14.29 | 0.26 | 0.17 |
HF×NZH | 120.10 | 67.97-199.76 | 27.81 | 99.88 | 114.59 | 14.59 | 46.34 | 65.85 | 19.51 | -0.59 | 0.33 | ||||
可滴定酸 Titratable acid (g/100 mL) | NZH×HF | 0.67±0.01 | 0.58±0.02 | 0.63 | 0.60 | 0.31-1.13 | 32.60 | 89.50 | 95.60 | -4.40 | 33.33 | 41.67 | 47.92 | 0.22 | 0.75 |
HF×NZH | 0.59 | 0.25-0.96 | 24.01 | 80.11 | 94.31 | -5.69 | 16.13 | 45.16 | 41.94 | 1.06 | 0.02 | ||||
果实花色苷 Anthocyanin content (mg·kg-1) | NZH×HF | 6.96±0.53 | 42.02±0.61 | 24.49 | 23.58 | 3.12-112.51 | 84.81 | 99.86 | 96.30 | -3.70 | 14.10 | 30.77 | 8.97 | 6.58 | 0.26 |
HF×NZH | 22.20 | 1.80-79.94 | 73.84 | 99.79 | 90.64 | -9.36 | 12.20 | 31.71 | 7.32 | 3.18 | 1.70 | ||||
果形指数 Fruit shape index | NZH×HF | 0.87±0.02 | 1.02±0.05 | 0.95 | 0.98 | 0.86-1.12 | 5.58 | 47.71 | 102.85 | 2.85 | 22.39 | 68.66 | 1.49 | -0.29 | 0.56 |
HF×NZH | 0.97 | 0.87-1.12 | 4.56 | 21.57 | 102.61 | 2.61 | 14.29 | 71.43 | 0.75 | 0.16 | 0.57 | ||||
果实生育期 Fruit development period (d) | NZH×HF | 49.00 | 54.00 | 51.50 | 53.07 | 44-61 | 8.23 | / | 103.04 | 3.04 | 42.22 | 61.48 | 16.30 | -0.93 | 0.14 |
HF×NZH | 51.52 | 43-61 | 7.83 | / | 100.03 | 0.03 | 26.37 | 46.15 | 26.37 | -0.86 | 0.24 | ||||
果柄长度 Fruit stalk length (mm) | NZH×HF | 19.43±3.04 | 19.94±3.33 | 19.69 | 20.03 | 7.24-35.30 | 20.60 | 40.30 | 101.74 | 1.74 | 49.25 | 52.99 | 44.78 | 1.61 | 0.36 |
HF×NZH | 19.62 | 9.93-30.01 | 20.38 | 36.43 | 99.67 | -0.33 | 43.33 | 47.78 | 50.00 | 0.06 | 0.28 |
表2
中国樱桃‘南早红’和‘红妃’正、反交F1群体果实风味的遗传变异"
性状 Trait | 组合 Cross | 亲本Parent | 杂交F1代性状分离比例 Separation proportion for F1 hybrids (%) | ||||
---|---|---|---|---|---|---|---|
NZH | HF | ||||||
风味 Flavor | NZH×HF | 酸甜 Sour-sweet | 甜酸 Sweet-sour | 酸Sour (5.97) | 甜酸Sweet-sour (42.54) | 酸甜Sour-sweet (21.64) | 甜Sweet (29.85) |
HF×NZH | 酸Sour (3.26) | 甜酸Sweet-sour (52.17) | 酸甜Sour-sweet (25.00) | 甜Sweet (19.57) | |||
苦味 Bitter flavor | NZH×HF | 有苦味 Bitter | 无苦味 De-bitter | 无苦味De-bitter (97.04) | 有苦味Bitter (2.96) | ||
HF×NZH | 无苦味De-bitter (91.30) | 有苦味Bitter (8.70) |
表3
中国樱桃‘南早红’和‘红妃’正、反交F1群体果肉颜色和果皮颜色的遗传变异"
性状 Trait | 组合 Cross | 亲本Parent | 杂交F1代性状分离比例 Separation proportion for F1 hybrids (%) | ||||
---|---|---|---|---|---|---|---|
NZH | HF | ||||||
果肉颜色Flesh color | NZH×HF | 黄 Yellow | 乳白 Cream-white | 乳白 Cream-white (35.07) | 黄 Yellow (56.72) | 红 Red (5.22) | 紫红 Purple red (2.99) |
HF×NZH | 乳白 Cream-white (27.17) | 黄 Yellow (61.96) | 红 Red (7.61) | 紫红 Purple red (3.26) | |||
果皮颜色 Peel color | NZH×HF | 紫红 Purple red | 橙红 Orange red | 橙红 Orange red (27.82) | 红 Red (53.38) | 紫红 Purple red (12.78) | 黑紫 Black purple (6.02) |
HF×NZH | 橙红 Orange red (25.27) | 红 Red (61.54) | 紫红 Purple red (10.99) | 黑紫 Black purple (2.20) |
表4
中国樱桃‘南早红’和‘红妃’正、反交F1群体果实形状和果顶形状的遗传变异"
性状 Trait | 组合 Cross | 亲本Parent | 杂交F1代性状分离比例 Separation proportion for F1 hybrids (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
NZH | HF | ||||||||
果实形状 Fruit shape | NZH×HF | 肾形 Reniform | 心脏形 Heart | 肾形 Reniform (46.27) | 扁圆形 Oblate (2.24) | 近圆形 Near round (12.69) | 椭圆形 Ellipse (10.45) | 心脏形 Heart (28.36) | |
HF×NZH | 肾形 Reniform (35.16) | 扁圆形 Oblate (5.49) | 近圆形 Near round (21.98) | 椭圆形 Ellipse (4.40) | 心脏形 Heart (33.00) | ||||
果顶形状 Fruit top shape | NZH×HF | 凹 Concave | 凸 Convex | 凹 Concave (29.10) | 平 Flat (39.55) | 凸 Convex (31.34) | |||
HF×NZH | 凹 Concave (18.68) | 平 Flat (39.56) | 凸 Convex (41.76) |
表5
果实主要性状候选遗传模型及其极大似然函数值和AIC值"
性状 Trait | NZH×HF | HF×NZH | ||||
---|---|---|---|---|---|---|
备选模型 Model | 极大似然值 MLV | AIC值 AIC value | 备选模型 Model | 极大似然值 MLV | AIC值 AIC value | |
果质量 Fruit weight | 2MG-AD | -158.9561 | 329.9123 | 2MG-AD | -97.4125 | 206.8250 |
2MG-A | -163.5741 | 335.1482 | 2MG-EA | -102.5554 | 211.1109 | |
2MG-EA | -164.5972 | 335.1944 | 1MG-A | -103.3361 | 212.6722 | |
果实纵径 Longitudinal diameter | 1MG-A | -256.1247 | 518.2493 | 1MG-A | -158.1745 | 322.3489 |
2MG-A | -255.7949 | 519.5899 | 2MG-EA | -158.3125 | 322.6250 | |
1MG-AD | -255.9692 | 519.9385 | 1MG-AD | -158.0700 | 324.1400 | |
果实横径 Transverse diameter | 2MG-AD | -237.5514 | 487.1027 | 2MG-EA | -154.2085 | 314.4170 |
2MG-EA | -244.3091 | 494.6182 | 2MG-AD | -151.5555 | 315.1110 | |
1MG-A | -244.4566 | 494.9132 | 0MG | -157.5688 | 319.1377 | |
果实侧径 Lateral diameter | 2MG-EA | -225.2212 | 456.4423 | 2MG-EA | -148.4416 | 302.8831 |
1MG-A | -225.3303 | 456.6606 | 1MG-A | -150.5678 | 307.1356 | |
2MG-A | -224.8276 | 457.6553 | 2MG-AD | -148.3132 | 308.6263 | |
可溶性固形物 Total soluble solid | 2MG-AD | -282.5172 | 577.0345 | 2MG-AD | -192.1946 | 396.3893 |
2MG-EA | -285.9259 | 577.8517 | 2MG-A | -196.4489 | 400.8979 | |
1MG-A | -286.1594 | 578.3188 | 2MG-EA | -198.4019 | 402.8039 | |
可溶性糖 Soluble sugar | 2MG-AD | -359.3510 | 730.7020 | 2MG-EA | -196.4061 | 398.8121 |
2MG-A | -362.0946 | 732.1892 | 1MG-AD | -195.5200 | 399.0401 | |
2MG-EA | -363.7563 | 733.5126 | 1MG-A | -196.6420 | 399.2839 | |
可滴定酸 Titratable acid | 2MG-A | 19.4123 | -30.8247 | 2MG-A | 22.4635 | -36.9270 |
1MG-A | 18.1227 | -30.2453 | 2MG-AD | 22.9213 | -33.8426 | |
1MG-AD | 18.1240 | -28.2481 | 2MG-EA | 18.2742 | -30.5484 | |
花色苷含量 Anthocyanin content | 2MG-AD | -308.7738 | 629.5476 | 2MG-EA | -159.7461 | 325.4923 |
1MG-AD | -311.2824 | 630.5649 | 2MG-AD | -157.1097 | 326.2195 | |
2MG-EA | -312.9347 | 631.8694 | 2MG-A | -159.7025 | 327.4050 | |
果形指数 Fruit shape index | 2MG-EA | 205.0708 | -404.1417 | 2MG-AD | 160.6529 | -309.3059 |
2MG-A | 203.9652 | -399.9304 | 2MG-EA | 158.3081 | -308.6163 | |
1MG-A | 202.7257 | -399.4513 | 2MG-A | 157.1782 | -308.3565 | |
果实生育期 Fruit development period | 1MG-A | -379.6368 | 765.2737 | 1MG-A | -247.9257 | 501.8514 |
1MG-AD | -379.6406 | 767.2812 | 1MG-AD | -246.9941 | 501.9882 | |
1MG-EAD | -380.9697 | 769.9394 | 1MG-NCD | -247.9908 | 503.9815 | |
果柄长度 Fruit stalk length | 2MG-A | -376.5200 | 761.0400 | 2MG-AD | -244.6610 | 501.3221 |
2MG-EA | -377.7745 | 761.5490 | 0MG | -251.9375 | 507.8750 | |
1MG-A | -377.8436 | 761.6871 | 2MG-EA | -251.1569 | 508.3138 |
表6
最适遗传模型下果实主要性状的遗传参数估计"
性状 Trait | NZH×HF | HF×NZH | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
模型 Model | da | db | ha | hb | 模型 Model | da | db | ha | hb | |
单果质量Fruit weight | 2MG-AD | 0.86 | 0.25 | 0.04 | -0.40 | 2MG-AD | 0.82 | 0.51 | 0.04 | -0.09 |
果实纵径Longitudinal diameter | 1MG-A | 1.95 | / | / | / | 1MG-A | 1.22 | / | / | / |
果实横径Transverse diameter | 2MG-AD | 1.76 | -0.08 | -0.09 | 0.91 | 2MG-EA | 1.30 | 1.30 | / | / |
果实侧径Lateral diameter | 2MG-EA | 0.66 | 0.66 | / | / | 2MG-EA | 0.62 | 0.62 | / | / |
可溶性固形物Total soluble solid | 2MG-AD | 1.88 | 0.55 | -1.76 | -1.38 | 2MG-AD | 1.67 | 1.26 | -0.30 | -1.08 |
可溶性糖Soluble sugar | 2MG-AD | 22.50 | 19.35 | 8.65 | 7.98 | 2MG-EA | 22.97 | 22.97 | / | / |
可滴定酸Titratable acid | 2MG-A | 0.00 | 0.22 | / | / | 2MG-A | 0.02 | 0.07 | / | / |
花色苷含量Anthocyanin content | 2MG-AD | 17.05 | 8.45 | -13.99 | -0.50 | 2MG-EA | 7.37 | 7.73 | / | / |
果形指数Fruit shape index | 2MG-EA | 0.05 | 0.05 | / | / | 2MG-AD | 0.02 | 0.01/ | -0.06 | 0.04 |
果实生育期Fruit development period | 1MG-A | 4.30 | / | / | / | 1MG-A | 3.67 | / | / | / |
果柄长度Fruit stalk length | 2MG-A | -0.24 | 2.62 | / | / | 2MG-AD | 2.71 | 1.59 | -3.09 | -4.61 |
[1] | 俞德浚. 中国植物志.第三十八卷. 北京: 科学出版社, 1986. |
YU D J. Flora of China (Vol. 38). Beijing: Science Press, 1986. (in Chinese) | |
[2] | 黄晓姣, 王小蓉, 陈涛, 陈娇, 汤浩茹. 中国樱桃遗传资源多样性研究进展. 果树学报, 2013, 30(3): 470-479. |
HUANG X J, WANG X R, CHEN T, CHEN J, TANG H R. Research progress of germplasm diversity in Chinese cherry (Cerasus pseudocerasus). Journal of Fruit Science, 2013, 30(3): 470-479. (in Chinese) | |
[3] | 王小蓉, 洪莉. 樱桃种质资源研究与生产关键技术. 北京: 中国农业科学技术出版社, 2019. |
WANG X R, HONG L. Research on Cheery Germplasm Resources and Key Technology of Production. Beijing: China Agricultural Science and Technology Press, 2019. (in Chinese) | |
[4] | 段续伟, 李明, 谭钺, 张晓明, 王宝刚, 闫国华, 王晶, 潘凤荣, 刘庆忠, 张开春. 新中国果树科学研究70年—樱桃. 果树学报, 2019, 36(10): 1339-1351. |
DUAN X W, LI M, TAN Y, ZHANG X M, WANG B G, YAN G H, WANG J, PAN F R, LIU Q Z, ZHANG K C. Fruit scientific research in new China in the past 70 years: Cherry. Journal of Fruit Science, 2019, 36(10): 1339-1351. (in Chinese) | |
[5] | 陈涛, 李良, 张静, 黄智林, 张洪伟, 刘胤, 陈清, 汤浩茹, 王小蓉. 中国樱桃种质资源的考察、收集和评价. 果树学报, 2016, 33(8): 917-933. |
CHEN T, LI L, ZHANG J, HUANG Z L, ZHANG H W, LIU Y, CHEN Q, TANG H R, WANG X R. Investigation, collection and preliminary evaluation of genetic resources of Chinese cherry [Cerasus pseudocerasus (Lindl.) G. Don]. Journal of Fruit Science, 2016, 33(8): 917-933. (in Chinese) | |
[6] |
QUERO-GARCÍA J, LETOURMY P, CAMPOY J A, BRANCHEREAU C, MALCHEV S, BARRENECHE T, DIRLEWANGER E. Multi-year analyses on three populations reveal the first stable QTLs for tolerance to rain-induced fruit cracking in sweet cherry (Prunus avium L.). Horticulture Research, 2021, 8: s41438-21. doi: 10.1038/s41438-021-00571-6.
doi: 10.1038/s41438-021-00571-6 |
[7] |
HARDNER C M, HAYES B J, KUMAR S, VANDERZANDE S, CAI L C, PIASKOWSKI J, QUERO-GARCIA J, CAMPOY J A, BARRENECHE T, GIOVANNINI D, LIVERANI A, CHARLOT G, VILLAMIL-CASTRO M, ORAGUZIE N, PEACE C P. Prediction of genetic value for sweet cherry fruit maturity among environments using a 6K SNP array. Horticulture Research, 2019, 6: 6-15. doi: 10.1038/s41438-018-0081-7.
doi: 10.1038/s41438-018-0081-7 pmid: 30603092 |
[8] | 徐强, 郝玉金, 黄三文, 邓秀新. 果实品质研究进展. 中国基础科学, 2016(1): 55-62. |
XU Q, HAO Y J, HUANG S W, DENG X X. Advances in fruit quality researches. China Basic Science, 2016(1): 55-62. (in Chinese) | |
[9] | 赵慧. 甜樱桃果实大小性状的遗传分析与QTL定位[D]. 沈阳: 沈阳农业大学, 2018. |
ZHAO H. Inheritance and QTL mapping for fruit size in sweet cherry[D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese) | |
[10] |
CALLE A, CAI L C, IEZZONI A, WÜNSCH A. Genetic dissection of bloom time in low chilling sweet cherry (Prunus avium L.) using a multi-family QTL approach. Frontiers in Plant Science, 2020, 10: 1647. doi: 10.3389/fpls.2019.01647.
doi: 10.3389/fpls.2019.01647 |
[11] |
ZHOU H, MA R J, GAO L, ZHANG J Y, ZHANG A, ZHANG X J, REN F, ZHANG W H, LIAO L, YANG Q R, XU S L, OGUTU C O, ZHAO J B, YU M L, JIANG Q, KORBAN S S, HAN Y P. A 1.7-Mb chromosomal inversion downstream of a PpOFP1 gene is responsible for flat fruit shape in peach. Plant Biotechnology Journal, 2021, 19(1): 192-205. doi: 10.1111/pbi.13455.
doi: 10.1111/pbi.13455 |
[12] |
VALDERRAMA-SOTO D, SALAZAR J, SEPÚLVEDA-GONZÁLEZ A, SILVA-ANDRADE C, GARDANA C, MORALES H, BATTISTONI B, JIMÉNEZ-MUÑOZ P, GONZÁLEZ M, PEÑA-NEIRA Á, INFANTE R, PACHECO I. Detection of quantitative trait Loci controlling the content of phenolic compounds in an Asian plum (Prunus salicina L.) F1 population. Frontiers in Plant Science, 2021, 12: 679059. doi: 10.3389/fpls.2021.679059.
doi: 10.3389/fpls.2021.679059 |
[13] | 刘家成, 章秋平, 牛铁泉, 刘宁, 张玉萍, 徐铭, 马小雪, 张玉君, 刘硕, 刘威生. ‘串枝红’与‘赛买提’杏正、反交后代果实性状遗传倾向分析. 果树学报, 2020, 37(5): 625-634. |
LIU J C, ZHANG Q P, NIU T Q, LIU N, ZHANG Y P, XU M, MA X X, ZHANG Y J, LIU S, LIU W S. Analysis of inherited tendency of fruit characteristics in F1 group of reciprocal crossing between ‘Chuanzhihong’ and ‘Saimaiti' in apricots. Journal of Fruit Science, 2020, 37(5): 625-634. (in Chinese) | |
[14] |
YANG C Q, SHA G Y, WEI T, MA B Q, LI C Y, LI P M, ZOU Y J, XU L F, MA F W. Linkage map and QTL mapping of red flesh locus in apple using a R1R1×R6R6 population. Horticultural Plant Journal, 2021, 7(5): 393-400.
doi: 10.1016/j.hpj.2020.12.008 |
[15] | 闫忠业, 伊凯, 刘志, 王冬梅, 吕天星, 李春敏, 陈东玫. ‘玉’ב冠’果杂交后代果实糖酸组分遗传分析. 果树学报, 2017, 34(2): 129-136. |
YAN Z Y, YI K, LIU Z, WANG D M, LÜ T X, LI C M, CHEN D M. A study of genetic trend of sugar and acid components in the fruits of apple hybrid progeny of‘Jonathan' × ‘Golden Delicious'. Journal of Fruit Science, 2017, 34(2): 129-136. (in Chinese) | |
[16] | 赵崇斌, 郭乙含, 李舒庆, 徐红霞, 黄天启, 林顺权, 陈俊伟, 杨向晖. 宁海白×大房枇杷F1杂交群体果实性状的相关性及遗传分析. 果树学报, 2021, 38(7): 1055-1065. |
ZHAO C B, GUO Y H, LI S Q, XU H X, HUANG T Q, LIN S Q, CHEN J W, YANG X H. Correlation and genetic analysis of fruit traits in F1 hybrid population of loquat generated from Ninghaibai × Dafang. Journal of Fruit Science, 2021, 38(7): 1055-1065. (in Chinese) | |
[17] |
IEZZONI A F, MCFERSON J, LUBY J, GASIC K, WHITAKER V, BASSIL N, YUE C Y, GALLARDO K, MCCRACKEN V, COE M, HARDNER C, ZURN J D, HOKANSON S, WEG E V D, JUNG S, MAIN D, LINGE D S L, VANDERZANDE S, DAVIS T M, MAHONEY L L, FINN C, PEACE C. RosBREED: Bidging the chasm between discovery and application to enable DNA-informed breeding in rosaceous crops. Horticulture Research, 2020, 7(1): 177.
doi: 10.1038/s41438-020-00398-7 |
[18] |
PEACE C P. DNA-informed breeding of rosaceous crops: Promises, progress and prospects. Horticulture Research, 2017, 4(1): 17006. doi: 10.1038/hortres.2017.6.
doi: 10.1038/hortres.2017.6 |
[19] |
WANG L, WANG Y, ZHANG J, FENG Y, CHEN Q, LIU Z S, LIU C L, HE W, WANG H, YANG S F, ZHANG Y, LUO Y, TANG H R, WANG X R. Comparative analysis of transposable elements and the identification of candidate centromeric elements in the Prunus subgenus Cerasus and its relatives. Genes, 2022, 13(4): 641. doi: 10.3390/genes13040641.
doi: 10.3390/genes13040641 |
[20] |
LIU Z S, ZHANG J, WANG Y, WANG H, WANG L, ZHANG L, XIONG M R, HE W, YANG S F, CHEN Q, CHEN T, LUO Y, ZHANG Y, TANG H R, WANG X R. Development and cross-species transferability of novel genomic-SSR markers and their utility in hybrid identification and trait association analysis in Chinese cherry. Horticulturae, 2022, 8(3): 222.
doi: 10.3390/horticulturae8030222 |
[21] | 王珏, 王燕, 张静, 陈涛, 王磊, 陈清, 汤浩茹, 王小蓉. 中国樱桃InDel标记开发及其在蔷薇科果树中通用性评价. 园艺学报, 2020, 47(1): 98-110. |
WANG J, WANG Y, ZHANG J, CHEN T, WANG L, CHEN Q, TANG H R, WANG X R. Development of insertion-deletion(InDel)markers based on whole-genome sequencing data in Chinese cherry and their transferability in Rosaceae fruit trees. Acta Horticlturae Sincia, 2020, 47(1): 98-110. (in Chinese) | |
[22] | 宗宇, 王月, 朱友银, 邵姁, 李永强, 郭卫东. 基于中国樱桃转录组的SSR分子标记开发与鉴定. 园艺学报, 2016, 43(8): 1566-1576. |
ZONG Y, WANG Y, ZHU Y Y, SHAO X, LI Y Q, GUO W D. Development and validation of SSR markers based on transcriptomic data of Chinese cherry (Prunus pseudocerasus). Acta Horticulturae Sinica, 2016, 43(8): 1566-1576. (in Chinese) | |
[23] | WANG Y, WANG H, ZHANG J, LIU Z S, CHEN Q, HE W, YANG S F, LIN Y X, ZHANG Y T, LI M Y, ZHANG Y, LUO Y, TANG H R, WANG X R. Survey on intra-specific crossing and F1 seedlings cultivation of seven combinations in Chinese cherry. Horticultural Plant Journal, 2022, 91(3): 267-275. |
[24] |
WANG Y, HU G P, LIU Z S, ZHANG J, MA L, TIAN T, WANG H, CHEN T, CHEN Q, HE W, YANG S F, LIN Y X, ZHANG Y T, LI M Y, ZHANG Y, LUO Y, TANG H R, WANG X R. Phenotyping in flower and main fruit traits of Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don]. Scientia Horticulturae, 2022, 296: 110920.
doi: 10.1016/j.scienta.2022.110920 |
[25] | 杜含梅, 王小蓉, 陈涛, 张洪伟, 杜涛. 中国樱桃种内及与欧洲甜樱桃杂交的初步分析. 广西植物, 2015, 35(2): 227-230, 193. |
DU H M, WANG X R, CHEN T, ZHANG H W, DU T. Preliminary study on intraspecific hybridization of Cerasus pseudocerasus and interspecific hybridization with C. avium. Guihaia, 2015, 35(2): 227-230, 193. (in Chinese) | |
[26] | 吴延军, 武凯翔, 袁玥, 董梦梦. 甜樱桃新种质种内及与中国樱桃种间杂交效率分析. 果树学报, 2019, 36(9): 1112-1120. |
WU Y J, WU K X, YUAN Y, DONG M M. Analysis the efficiency of inter and intra-specific hybridization of new cultivars of sweet cherry and Chinese cherry. Journal of Fruit Science, 2019, 36(9): 1112-1120. (in Chinese) | |
[27] | 赵改荣, 李明. 樱桃种质资源描述规范和数据标准. 北京: 中国农业科学技术出版社, 2011. |
ZHAO G R, LI M. Descriptors and data standards for cherry. Beijing: China Agricultural Science and Technology Press, 2011. (in Chinese) | |
[28] | 熊庆娥. 植物生理学实验教程. 成都: 四川科学技术出版社, 2003. |
XIONG Q E. Plant Physiology. Chengdu: Sichuan Scientific & Technical Publishers, 2003. (in Chinese) | |
[29] |
CHEN X S, WU Y, CHEN M X, HE T M, FENG J R, LIANG Q, LIU W, YANG H H, ZHANG L J. Inheritance and correlation of self-compatibility and other yield components in the apricot hybrid F1 populations. Euphytica, 2006, 150(1/2): 69-74. doi: 10.1007/s10681-006-9094-7.
doi: 10.1007/s10681-006-9094-7 |
[30] | 沈德绪. 果树育种学. 2版. 北京: 中国农业出版社, 1997. |
SHEN D X. Fruit-Tree Breeding. Beijing: Chinese Agriculture Press, 1997. (in Chinese) | |
[31] |
王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0. 作物学报, 2022, 48(6): 1416-1424.
doi: 10.3724/SP.J.1006.2022.14088 |
WANG J T, ZHANG Y W, DU Y W, REN W L, LI H F, SUN W X, GE C, ZHANG Y M. SEA v2.0: An R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits. Acta Agronomica Sinica, 2022, 48(6): 1416-1424. (in Chinese)
doi: 10.3724/SP.J.1006.2022.14088 |
|
[32] | 王燕, 刘针杉, 张静, 杨鹏飞, 马蓝, 王旨意, 涂红霞, 杨绍凤, 王浩, 陈涛, 王小蓉. 中国樱桃杂交F1代花和果实若干性状遗传倾向分析. 园艺学报, 2022, 49(9): 1853-1865. |
WANG Y, LIU Z S, ZHANG J, YANG P F, MA L, WANG Z Y, TU H X, YANG S F, WANG H, CHEN T, WANG X R. Inheritance trend of flower and fruit traits in F1 progenies of Chinese cherry. Acta Horticulturae Sinica, 2022, 49(9): 1853-1865. (in Chinese) | |
[33] | 王勇, 伍国红, 李玉玲, 孙锋, 骆强伟, 苏来曼·艾则孜, 郭平峰, 余义和. ‘红地球’葡萄杂交F1代重要果实性状遗传倾向分析. 果树学报, 2015, 32(6): 1099-1106. |
WANG Y, WU G H, LI Y L, SUN F, LUO Q W, SULAIMAN Aizezi, GUO P F, YU Y H. Inheritance trend of the fruit traits of F1 progenies of ‘Red Globe’ grapevine. Journal of Fruit Science, 2015, 32(6): 1099-1106. (in Chinese) | |
[34] | 王鹏飞, 付鸿博, 穆霄鹏, 张建成, 杜俊杰. ‘农大6号’与‘农大7号’欧李正反交F1代果实品质的遗传变异分析. 中国果树, 2021(1): 50-55. |
WANG P F, FU H B, MU X P, ZHANG J C, DU J J. Genetic analysis of fruit quality in the F1 generation from reciprocal crosses between ‘Nongda 6’ and ‘Nongda 7’ Cerasus humilis. China Fruits, 2021(1): 50-55. (in Chinese) | |
[35] | 姜凤超, 孙浩元, 杨丽, 张俊环, 王玉柱. ‘串枝红’ב骆驼黄’杏F1代糖酸性状的遗传变异分析. 果树学报, 2018, 35(6): 649-657. |
JIANG F C, SUN H Y, YANG L, ZHANG J H, WANG Y Z. Analysis of genetic variation of sugar and acid contents in F1 population of apricot derived from ‘Chuanzhihong’ × ‘Luotuohuang’. Journal of Fruit Science, 2018, 35(6): 649-657. (in Chinese) | |
[36] |
付鸿博, 王鹏飞, 徐豆, 穆霄鹏, 张建成, 付宝春, 杜俊杰. 农大4号与DS-1欧李正、反交F1代果实品质的遗传变异分析. 核农学报, 2021, 35(10): 2223-2233.
doi: 10.11869/j.issn.100-8551.2021.10.2223 |
FU H B, WANG P F, XU D, MU X P, ZHANG J C, FU B C, DU J J. Heredity and variation analysis of fruit quality in the F generation from reciprocal crosses between nongda 4 and DS-1 Chinese dwarf cherry (Cerasus humilis). Journal of Nuclear Agricultural Sciences, 2021, 35(10): 2223-2233. (in Chinese)
doi: 10.11869/j.issn.100-8551.2021.10.2223 |
|
[37] | 刘有春, 魏永祥, 王兴东, 刘成, 蒋明三, 张舵, 袁兴福, 陶承光. 南高丛越橘品种‘Sapphire’和北高丛品种‘Berkeley’正反交后代果实糖酸组分含量的遗传倾向. 中国农业科学, 2014, 47(24): 4878-4885. |
LIU Y C, WEI Y X, WANG X D, LIU C, JIANG M S, ZHANG D, YUAN X F, TAO C G. Inheritance tendency of sugar and acid contents in the reciprocal cross progenies' fruits of southern × northern high bush blueberry (Vaccinium). Scientia Agricultura Sinica, 2014, 47(24): 4878-4885. (in Chinese) |
[1] | 王岭,才羿,王桂超,王迪,盛云燕. 甜瓜SLAF图谱构建及果实相关性状QTL分析[J]. 中国农业科学, 2021, 54(19): 4196-4206. |
[2] | 苗晗, 顾兴芳, 张圣平, 张忠华, 黄三文, 王烨, 程周超, 张若纬, 穆生奇, 李曼, 张振贤, 方智远. 黄瓜果实相关性状QTL定位分析[J]. 中国农业科学, 2011, 44(24): 5031-5040. |
|