[1] |
SURICO G, KENNEDY B W, ERCOLANI G L. Multiplication of Pseudomonas syringae pv. glycinea on soybean primary leaves exposed to aerosolized inoculum. Phytopathology, 1981, 71: 532-536.
|
[2] |
GOMILA M, BUSQUETS A, MULET M, GARCIA-VALDES E, LALUCAT J. Clarification of taxonomic status within the Pseudomonas syringae species group based on a phylogenomic analysis. Frontiers in Microbiology, 2017, 8: 2422.
|
[3] |
PEIX A, RAMIREZ-BAHENA M H, VELAZQUEZ E. The current status on the taxonomy of Pseudomonas revisited: An update. Infection Genetics and Evolution, 2018, 57: 106-116.
|
[4] |
LEBEN C. Survival of Pseudomonas syringae pv. lachrymans with cucumber seed. Canadian Journal of Plant Pathology, 1981, 3(4): 247-249.
|
[5] |
UMEKAWA M, WATANABE Y, INOMATA Y. Facilitative effect of rainfall on the transmission of the pathogen and the development of angular leaf spot of cucumber. Japanese Journal of Phytopathology, 1981, 47: 346-351.
|
[6] |
ZHANG S P, MENG X L, CHENG Y, WANG Y N, HU T L, WANG S T, CAO K Q. Infection of cucumber seedling roots by Pseudomonas amygdali pv. lachrymans following artificial substrate inoculation. European Journal of Plant Pathology, 2021, 160(2): 385-395.
|
[7] |
CHAI A L, YUAN L F, LI L, SHI Y X, XIE X W, WANG Q, LI B J. Aerosol transmission of Pseudomonas amygdali pv. lachrymans in greenhouses. Science of the Total Environment, 2020, 748: 141433.
|
[8] |
YAMANAKA S, OZAKI M, KATO S. Some observations on angular leaf spot of cucumber with a scanning electron microscope. Tohoku Journal Agriculture Research, 1980, 30: 135-141.
|
[9] |
BHAT N A, BHAT K A, ZARGAR M Y, TELI M A, NAZIR M, ZARGAR S M. Current status of angular leaf spot (Pseudomonas syringae pv. lachrmans) of cucumber: A review. International Journal of Current Research, 2010, 8: 1-11.
|
[10] |
MENG X L, XIE X W, SHI Y X, CHAI A L, MA Z H, LI B J. Evaluation of a loop-mediated isothermal amplification assay based on hrpZ gene for rapid detection and identification of Pseudomonas syringae pv. lachrymans in cucumber leaves. Journal of Applied Microbiology, 2017, 122(2): 441-449.
|
[11] |
刘建荣. 不同通风方式组合对日光温室环境要素的影响[D]. 太谷: 山西农业大学, 2018.
|
|
LIU J R. The effects of different ventilation combinations on environmental factors in solar greenhouse[D]. Taigu: Shanxi Agricultural University, 2018. (in Chinese)
|
[12] |
周长吉. 周博士考察拾零(一百三十五)一种半圆形通风脊大跨度塑料大棚. 农业工程技术, 2022, 42(34): 23-27.
|
|
ZHOU C J. Dr. Zhou’s inspection notes (No. 135) A large-span plastic greenhouse with semi-circular ventilation ridge. Agricultural Engineering Technology, 2022, 42(34): 23-27. (in Chinese)
|
[13] |
赵融盛. 不同通风条件对塑料温室气流及温湿度的影响[D]. 杨凌: 西北农林科技大学, 2021.
|
|
ZHAO R S. Influence of different ventilation conditions on air flow and temperature and humidity in plastic greenhouses[D]. Yangling: Northwest A&F University, 2021. (in Chinese)
|
[14] |
FERNG S F, LEE L W. Indoor air quality assessment of daycare facilities with carbon dioxide, temperature, and humidity as indicators. Journal of Environmental Health, 2002, 65(4): 14-18, 22.
|
[15] |
LI X, ZHANG T F, WANG J H, WANG S G. Aerosolization of Aspergillus niger spores from growing colonies on a bare tube. Atmospheric Environment, 2019, 218: 117008.
|
[16] |
AYLOR D E. The role of intermittent wind in the dispersal of fungal pathogens. Annual Review of Phytopathology, 1990, 28: 73-92.
|
[17] |
李宝聚, 柴阿丽, 王昊, 王少骅, 谢学文, 石延霞, 李磊, 范腾飞. 农业栽培空间病原菌采样器[P]: CN202321945754.5 (2024-02-06) [2024-12-25].
|
|
LI B J, CHAI A L, WANG H, WANG S H, XIE X W, SHI Y X, LI L, FAN T F. Pathogen sampler for agricultural cultivation space[P]: CN202321945754.5 (2024-02-06) [2024-12-25]. (in Chinese)
|
[18] |
ZHAO Q, SHI Y X, WANG Y H, XIE X W, LI L, GUO L Y, CHAI A L, LI B J. Quantifying airborne dispersal route of Corynespora cassiicola in greenhouses. Frontiers in Microbiology, 2021, 12: 716758.
|
[19] |
NAQVI S A H, WANG J, MALIK M T, UMAR U U D, ATEEQ-UR-REHMAN, HASNAIN A, SOHAIL M A, SHAKEEL M T, NAUMAN M, HAFEEZ-UR-REHMAN, HASSAN M Z, FATIMA M, DATTA R. Citrus canker—distribution, taxonomy, epidemiology, disease cycle, pathogen biology, detection, and management: A critical review and future research agenda. Agronomy, 2022, 12(5): 1075.
|
[20] |
MEYER M, COX J A, HITCHINGS M D T, BURGIN L, HORT M C, HODSON D P, GILLIGAN C A. Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply. Nature Plants, 2017, 3: 780-786.
doi: 10.1038/s41477-017-0017-5
pmid: 28947769
|
[21] |
刘汉兵, 陈映彤, 张婧, 白国梁, 张鑫, 蒋欣梅, 于锡宏. 哈尔滨短毛独活白粉病流行动态及影响因子分析. 西北农林科技大学学报(自然科学版), 2021, 49(9): 57-66.
|
|
LIU H B, CHEN Y T, ZHANG J, BAI G L, ZHANG X, JIANG X M, YU X H. Epidemic dynamics and impact factors of Heracleum moellendorffii Hance powdery mildew in Harbin. Journal of Northwest A&F University (Natural Science Edition), 2021, 49(9): 57-66. (in Chinese)
|
[22] |
SINGH M C, SHARMA K K, PRASAD V. Impact of ventilation rate and its associated characteristics on greenhouse microclimate and energy use. Arabian Journal of Geosciences, 2022, 15(3): 288.
|
[23] |
LYU X, XU Y Q, WEI M, WANG C Q, ZHANG G S, WANG S J. Effects of vent opening, wind speed, and crop height on microenvironment in three-span arched greenhouse under natural ventilation. Computers and Electronics in Agriculture, 2022, 201: 107326.
|
[24] |
何科奭, 陈大跃, 孙丽娟, 刘正鲁. 不同风况和开窗配置对夏季单栋塑料温室微气候的影响. 农业机械学报, 2017, 48(12): 311-318.
|
|
HE K S, CHEN D Y, SUN L J, LIU Z L. Effects of wind regime and vent configuration on microclimate in tunnel greenhouses in summer. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 311-318. (in Chinese)
|
[25] |
EHRLICH R, MILLER S. Survival of airborne Pasteurella tularensis at different atmospheric temperatures. Applied Microbiology, 1973, 25: 369-372.
|
[26] |
WATHES C M, HOWARD K, WEBSTER A J. The survival of Escherichia coli in an aerosol at air temperatures of 15 and 30℃ and a range of humidities. Journal of Hygiene, 1986, 97: 489-496.
|
[27] |
SHARONI S, TRAINIC M, SCHATZ D, LEHAHN Y, FLORES M, BIDLE K, BEN-DOR S, RUDICH Y, KOREN I, VARDI A. Infection of phytoplankton by aerosolized marine viruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 6643-6647.
|
[28] |
VAN LEUKEN J, SWART A, DROOGERS P, PUL A, HEEDERIK D, HAVELAAR A. Climate change effects on airborne pathogenic bioaerosol concentrations: A scenario analysis. Aerobiologia, 2016, 32: 607-617.
pmid: 27890966
|
[29] |
BOURNET P E, BOULARD T. Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Computers and Electronics in Agriculture, 2010, 74: 195-217.
|
[30] |
王传清, 倪秀男, 魏珉, 李清明, 王少杰, 曹欣. 基于CFD的不同通风方式塑料大棚降温效果研究. 农业机械学报, 2023, 54(1): 351-356, 439.
|
|
WANG C Q, NI X N, WEI M, LI Q M, WANG S J, CAO X. Cooling effect of plastic greenhouse with different ventilation modes based on CFD. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(1): 351-356, 439. (in Chinese)
|
[31] |
BURROWS S, BUTLER T, JÖCKEL P, TOST H, KERKWEG A, PÖSCHL U, LAWRENCE M. Bacteria in the global atmosphere - Part 2: Modeling of emissions and transport between different ecosystems. Atmospheric Chemistry and Physics, 2009, 9: 9281-9297.
|
[32] |
QIU Y J, ZHOU Y, CHANG Y F, LIANG X Y, ZHANG H, LIN X R, QING K, ZHOU X J, LUO Z Q. The effects of ventilation, humidity, and temperature on bacterial growth and bacterial genera distribution. International Journal of Environmental Research and Public Health, 2022, 19(22): 15345.
|
[33] |
HARRISON M. Aerosol dissemination of bacterial plant pathogens. Annals of the New York Academy of Sciences, 1980, 353: 94-104.
|
[34] |
GE J K, CAI C D, LIU Y F, GONG X W. Effect of irrigation time on the growth rate and indoor environment of greenhouse eggplant. Journal of the Institution of Engineers: Series A, 2018, 99(4): 647-651.
|