中国农业科学 ›› 2025, Vol. 58 ›› Issue (6): 1159-1172.doi: 10.3864/j.issn.0578-1752.2025.06.009

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

基于RGB和纹理特征的土壤表层水盐信息反演方法

宋岩1,2(), 柴明堂1,2(), 李王成1, 孙利英1, 吾连恩·赛尔奴1, 杜天择1   

  1. 1 宁夏大学土木与水利工程学院,银川 750021
    2 宁夏回族自治区黄河水联网数字治水重点实验室,银川 750021
  • 收稿日期:2024-05-07 接受日期:2024-06-11 出版日期:2025-03-25 发布日期:2025-03-25
  • 通信作者:
    柴明堂,E-mail:
  • 联系方式: 宋岩,E-mail:1048182130@qq.com。
  • 基金资助:
    国家重点研发计划(2021YFD1900600); 宁夏自然科学基金项目(2023AAC05014); 宁夏重点研发项目(引才专项)(2023BSB03021)

A Method for Estimating Water-Salinity Information of Soil Surface Using RGB and Texture Features

SONG Yan1,2(), CHAI MingTang1,2(), LI WangCheng1, SUN LiYing1, Wulianen Saiernu1, DU TianZe1   

  1. 1 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021
    2 Ningxia Key Laboratory of the Internet of Water and Digital Water Governance of the Yellow River, Yinchuan 750021
  • Received:2024-05-07 Accepted:2024-06-11 Published:2025-03-25 Online:2025-03-25

摘要:

【目的】 盐渍土是全球性的生态环境问题。快速精准的监测表层土壤水分、盐分信息为土壤盐渍化的治理和改良提供支持。【方法】 本研究在小尺度上,将高精度光学遥感和图像数字处理技术相结合,提出一种基于土壤表观色彩参数(RGB)和纹理特征值预测土壤含水量、含盐量的定量估算方法。首先利用介电常数和含水量、电导率和含盐量之间的关系标定了土壤多参数传感器。其次利用图像数字处理技术,提取土壤的3种色彩参数(RGB)和纹理特征,并通过相关性分析等方法分别确定相关性最大的变量,并构建RGB、纹理特征同土壤含水量、含盐量的最优拟合模型。最后利用传感器法验证反演方法的精准度。【结果】 土壤含水量与RGB拟合的三元回归模型拟合效果最好,R 2为0.97。土壤含盐量与RGB和纹理特征的拟合中,当含盐量≥6%时,含盐量与土壤的表观白色占比拟合的一元多项式模型拟合效果最好,R 2为0.97;当含盐量<6%时,含盐量与纹理特征值中的自相关拟合效果最好,R 2为0.93。经过对比计算标定后的多参数传感器法和本文提出的反演方法得到的土壤含水量和含盐量,发现两种方法测量的土壤含水量相对误差范围为0.27%—9.48%,土壤含盐量相对误差范围为0.07%—8.64%,且绝对误差均<1%。【结论】 本研究为土壤表观水盐信息的反演提供了一种方案,为土壤表层的水盐的快速、准确的测定提供了理论依据和技术支撑。

关键词: 图像处理, 频域反射(FDR), 土壤色彩参数(RGB), 纹理特征, 土壤水盐含量

Abstract:

【Objective】 Saline soil poses a global ecological challenge. The rapid and precise monitoring of surface soil water and salt information was crucial for effective control and remediation of soil salinization. 【Method】 The present study proposed a quantitative estimation method, which combined high-precision optical remote sensing and image digital processing technology at a small scale, to predict soil water content and salt content based on soil apparent color parameters (RGB) and texture feature values. Firstly, the calibration of the soil multi-parameter sensor was based on the relationship between dielectric constant and water content, electrical conductivity, and salt content. Secondly, the image digital processing technology was employed to extract the RGB and texture features of the soil. The most relevant variables were determined through correlation analysis, and an optimal fitting model incorporating RGB, texture features, water content, and salt content was constructed. Finally, the accuracy of the inversion method was verified using the sensor approach.【Result】 The trivariate regression model, which fitted the water content and RGB, exhibited the most optimal fitting effect with an R2 value of 0.97. For the fitting of salt content to RGB and texture features, a one-variable polynomial model incorporating salt content and soil apparent white ratio demonstrated superior fitting performance when the salt content was greater than or equal to 6%, yielding an R2 value of 0.97. Conversely, for salt content below 6%, the autocorrelation (AUT) fitting between salt content and texture feature values was proved to be the most effective approach with an R2 value of 0.93. Upon comparing and calculating the water content and salt content obtained through both multi-parameter sensor calibration method and the inversion method proposed in this paper, it was observed that relative error ranges for water content measurement using these two methods fell within 0.27%-9.48%, while relative error ranges for salt content ranged from 0.07% to 8.64%. In both cases, the absolute errors remained below 1%. 【Conclusion】 The present study presented a methodology for the inversion of soil apparent water and salt information, thereby establishing a theoretical foundation and offering the technical support for the rapid and precise determination of soil surface water and salt.

Key words: image processing, frequency domain reflectometry (FDR), soil apparent color parameters (RGB), texture features, soil water and salt content