中国农业科学 ›› 2023, Vol. 56 ›› Issue (3): 572-586.doi: 10.3864/j.issn.0578-1752.2023.03.014
• 畜牧·兽医 • 上一篇
孙艳发1,2(), 吴琼1,2, 林如龙3, 陈红萍3, 甘秋云1, 沈玥1, 王亚茹1, 薛鹏飞1, 陈飞帆1, 刘健涛1, 周陈鑫1, 兰诗诗1, 潘浩哲1, 邓凡1,5, 岳稳3, 江宵兵4(
), 李焰1,2(
)
收稿日期:
2021-10-20
接受日期:
2022-11-16
出版日期:
2023-02-01
发布日期:
2023-02-14
通信作者:
江宵兵,Tel:13960752743;E-mail:fzjxb@163.com。 李焰,Tel:13860217279;E-mail:529783204@qq.com
联系方式:
孙艳发,Tel:18250071633;E-mail:boysun2010@163.com。
基金资助:
SUN YanFa1,2(), WU Qiong1,2, LIN RuLong3, CHEN HongPing3, GAN QiuYun1, SHEN Yue1, WANG YaRu1, XUE PengFei1, CHEN FeiFan1, LIU JianTao1, ZHOU ChenXin1, LAN ShiShi1, PAN HaoZhe1, DENG Fan1,5, YUE Wen3, JIANG XiaoBing4(
), LI Yan1,2(
)
Received:
2021-10-20
Accepted:
2022-11-16
Published:
2023-02-01
Online:
2023-02-14
摘要:
【目的】通过全基因组关联研究(genome-wide association study,GWAS)技术筛选和鉴定鸭蛋品质性状的单核苷酸多态性(single nucleotide polymorphisms,SNPs)位点及候选基因,为龙岩山麻鸭蛋品质性状分子育种提供参考。【方法】试验测定产蛋后期235只龙岩山麻鸭母鸭蛋品质性状,包括蛋重(egg weight,EW)、蛋形指数(egg shaped index,ESI)、蛋壳厚(eggshell thickness,EST)、蛋壳强度(eggshell strength,ESS)、蛋壳颜色L*、a*、b*值(eggshell colour L*, a*, b*,ESCL、ESCA和ESCB)、蛋白高度(albumin height,AH)、哈氏单位(Haugh unit,HU)、蛋黄颜色(egg yolk colour,EYC)、蛋黄重(egg yolk weight,EYW)和蛋黄比例(egg yolk percentage relative to egg weight,EYP)。使用ASReml-R 4.1软件多性状动物模型对蛋品质性状进行遗传参数估计。使用简化基因组测序技术对鸭血液基因组DNA进行SNP分型,分型后进行蛋品质性状与这些SNPs间的GWAS研究。【结果】龙岩山麻鸭蛋品质性状中,EW、ESI、EST、ESL、ESA和AU具有中高等的遗传力,遗传力在0.21—0.70之间。EW与AU存在较强的正遗传相关(rg = 0.91±0.37)。ESI与EYC存在较强的遗传负相关(rg = -0.98±1.03)。EST与ESS具有表型正相关(rp = 0.41±0.06),与ESA具有遗传和表型负相关(rg = -0.86±0.25和rp = -0.15±0.07),与ESB具有遗传和表型正相关(rg= 0.96±0.37和rp = 0.18±0.07)。ESA与ESB具有遗传和表型负相关(rg = -0.64±0.28和rp = -0.31±0.06)。GWAS研究结果表明,7个SNPs位点与ESI、EST和EYC达到5%基因组水平显著关联(P<4.74×10-6),涉及6个候选基因。与ESI关联的SNP(chr20:11135563:G:C)位点位于20号染色体含有75A富含亮氨酸重复序列(leucine rich repeat containing 75A)基因内。与EST关联的2个SNPs(chr13:5766560:A:G和chrZ:968819:C:T)位点分别位于13号LOC106014427下游6.86 kb处和Z染色体转录因子4(transcription factor 4)基因内。与EYC关联的4个SNPs位点,其中1个(chr2:38155965:G:A)位于2号染色体钾电压门控通道亚家族H成员8(potassium voltage-gated channel subfamily H member 8)基因内;3个SNPs位于9号染色体上的位点,2个(chr9:22623156:G:A和chr9:22623155:T:C)位于胰岛素受体底物1(insulin receptor substrate 1)内、1个(chr9:22490158:A:T)位于LOC106018641内。同时发现81个SNPs位点与蛋品质性状达到基因组水平潜在关联(P<9.48×10-5)。13个与EYC关联的SNPs位点集中在9号染色体0.84 Mb(22.16—23.00 Mb)区域内。【结论】估计了龙岩山麻鸭蛋品质性状的遗传参数,通过蛋品质性状GWAS研究鉴定了影响ESI、EST和EYC性状的7个显著的SNPs位点、6个候选基因和1个候选基因区域,这些结果为龙岩山麻鸭蛋品质性状分子育种提供参考信息。
孙艳发, 吴琼, 林如龙, 陈红萍, 甘秋云, 沈玥, 王亚茹, 薛鹏飞, 陈飞帆, 刘健涛, 周陈鑫, 兰诗诗, 潘浩哲, 邓凡, 岳稳, 江宵兵, 李焰. 龙岩山麻鸭蛋品质性状的全基因组关联研究[J]. 中国农业科学, 2023, 56(3): 572-586.
SUN YanFa, WU Qiong, LIN RuLong, CHEN HongPing, GAN QiuYun, SHEN Yue, WANG YaRu, XUE PengFei, CHEN FeiFan, LIU JianTao, ZHOU ChenXin, LAN ShiShi, PAN HaoZhe, DENG Fan, YUE Wen, JIANG XiaoBing, LI Yan. Genome-Wide Association Study of Egg Quality Traits in Longyan Shan-Ma Duck[J]. Scientia Agricultura Sinica, 2023, 56(3): 572-586.
表1
蛋品质性状表型值的描述性统计"
性状 Trait | 例数 N | 平均值 Mean | 最小值 Min | 最大值 Max | 标准差 SD | 变异系数 CV(%) |
---|---|---|---|---|---|---|
蛋重EW (g) | 235 | 69.70 | 51.30 | 84.30 | 5.28 | 7.57 |
蛋形指数ESI | 235 | 1.33 | 1.15 | 1.50 | 0.06 | 4.52 |
蛋壳厚EST (mm) | 235 | 0.33 | 0.20 | 0.44 | 0.04 | 10.68 |
蛋壳强度ESS (kg·cm-2) | 233 | 3.40 | 0.61 | 6.00 | 1.04 | 30.68 |
蛋壳颜色L* 值ESCL | 235 | 78.11 | 65.11 | 86.29 | 2.86 | 3.67 |
蛋壳颜色a*值ESCA | 234 | -3.04 | -8.44 | -0.53 | 1.52 | -50.17 |
蛋壳颜色b*值ESCB | 234 | 4.81 | 1.37 | 13.63 | 1.66 | 34.58 |
蛋白高度 AH (mm) | 235 | 6.36 | 1.32 | 20.80 | 3.33 | 9.85 |
哈氏单位HU | 235 | 74.84 | 38.22 | 95.47 | 10.70 | 14.29 |
蛋黄颜色EYC | 235 | 7.37 | 3.00 | 13.00 | 1.22 | 16.52 |
蛋黄重 EYW (g) | 232 | 24.14 | 11.70 | 37.30 | 3.70 | 15.33 |
蛋黄比例 EYP (%) | 232 | 34.77 | 17.06 | 57.91 | 5.52 | 15.87 |
表2
蛋品质性状的遗传参数估计"
蛋重 EW | 蛋形指数 ESI | 蛋壳厚 EST | 蛋壳强度 ESS | 蛋壳颜色L*值 ESCL | 蛋壳颜色a*值 ESCA | 蛋壳颜色b*值 ESCB | 蛋白高度 AH | 哈氏单位 HU | 蛋黄颜色 EYC | 蛋黄重 EYW | 蛋黄比例 EYP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
蛋重 EW | 0.21± 0.16 | - | - | - | - | - | - | 0.91± 0.37* | - | - | - | - |
蛋形指数 ESI | - | 0.29± 0.17 | - | - | - | - | - | - | - | -0.98± 1.03* | - | - |
蛋壳厚 EST | - | - | 0.41± 0.17 | - | - | -0.86± 0.25** | 0.96± 0.37** | - | - | - | - | - |
蛋壳强度 ESS | - | - | 0.41± 0.06*** | 0.01± 0.10 | - | - | - | - | - | - | - | - |
蛋黄颜色L*值 ESCL | - | - | - | - | 0.37± 0.18 | - | - | - | - | - | - | - |
蛋黄颜色a*值 ESCA | - | -0.16± 0.07* | -0.15± 0.07** | - | 0.25± 0.07*** | 0.70± 0.20 | -0.64± 0.28* | - | - | - | - | - |
蛋黄颜色b*值 ESCB | - | - | 0.18± 0.07** | 0.18± 0.06* | -0.31± 0.06*** | -0.31± 0.06*** | 0.16± 0.14 | - | - | - | - | - |
蛋白高度 AH | 0.04± 0.07* | - | - | 0.20± 0.06** | - | -0.09± 0.07* | - | 0.24± 0.18 | - | - | - | - |
哈氏单位 HU | -0.18± 0.07*** | - | - | 0.22± 0.06** | - | -0.12± 0.07* | - | - | 0.08± 0.14 | - | - | |
蛋黄颜色 EYC | -0.10± 0.07* | 0.07± 0.06* | - | - | - | - | - | - | 0.18± 0.06** | 0.07± 0.14 | - | - |
蛋黄重 EYW | 0.24± 0.06*** | - | - | - | - | - | - | - | - | - | 0.01± 0.12 | - |
蛋黄比例 EYP | -0.26± 0.06*** | - | - | - | - | - | - | - | - | - | 0.87± 0.02*** | 0.08± 0.12 |
表3
质控后和独立的SNPs标记在各条染色体上的分布"
染色体 Chromosome | SNPs数量 No. of SNPs | 独立SNPs数量 No. of independent SNPs | 染色体 Chromosome | SNPs数量 No. of SNPs | 独立SNPs数量 No. of independent SNPs | |
---|---|---|---|---|---|---|
1 | 9911 | 1523 | 16 | 1132 | 172 | |
2 | 7488 | 1250 | 17 | 30 | 9 | |
3 | 6116 | 988 | 18 | 1420 | 230 | |
4 | 4026 | 644 | 19 | 989 | 149 | |
5 | 4252 | 706 | 20 | 1546 | 251 | |
6 | 2311 | 435 | 21 | 1382 | 242 | |
7 | 2120 | 335 | 22 | 1072 | 177 | |
8 | 2479 | 402 | 23 | 278 | 63 | |
9 | 2163 | 407 | 24 | 687 | 122 | |
10 | 1242 | 202 | 25 | 974 | 186 | |
11 | 2177 | 369 | 26 | 134 | 48 | |
12 | 1028 | 152 | 27 | 819 | 189 | |
13 | 2066 | 377 | 28 | 766 | 173 | |
14 | 1607 | 307 | 29 | 506 | 80 | |
15 | 1545 | 240 | Z | 440 | 119 | |
总计Total | 62706 | 10547 |
表4
Bonferroni校正5%基因组显著的SNP位点"
性状 Trait | 染色体 Chromosome | 标记号 SNP ID | 物理位置 Position (bp) | A1 A1 | BETA值 BETA | P值 P value | 最近的基因 Nearest gene |
---|---|---|---|---|---|---|---|
蛋形指数ESI | 20 | chr20:11135563:G:C | 11135563 | C | -0.05 | 1.48×10-6 | within LRRC75A |
蛋壳厚EST | 13 | chr13:5766560:A:G | 5766560 | A | 0.02 | 1.36×10-6 | 6.86 kb D LOC106014427 |
Z | chrZ:968819:C:T | 968819 | T | -0.02 | 1.96×10-6 | within TCF4 | |
蛋黄颜EYC | 2 | chr2:38155965:G:A | 38155965 | A | 1.05 | 1.97×10-6 | within KCNH8 |
9 | chr9:22490158:A:T | 22490158 | T | -0.97 | 3.77×10-6 | within LOC106018641 | |
9 | chr9:22623155:T:C | 22623155 | C | -0.92 | 1.91×10-6 | within IRS1 | |
9 | chr9:22623156:G:A | 22623156 | A | -1.08 | 8.75×10-7 | within IRS1 |
表5
基因组水平潜在关联的SNP位点"
性状 Trait | 染色体 Chromosome | 标记号 SNP ID | 物理位置 Position (bp) | A1 A1 | BETA值 BETA | P值 P value | 最近的基因 Nearest gene |
---|---|---|---|---|---|---|---|
蛋重EW | 2 | chr2:10782468:A:G | 10782468 | G | 3.45 | 2.81×10-5 | U 120.07 kb ADARB2 |
2 | chr2:10790319:T:C | 10790319 | T | 3.31 | 5.81×10-5 | U 112.21 kb ADARB2 | |
5 | chr5:5547457:T:C | 5547457 | T | 2.89 | 3.36×10-5 | U 63.45 kb MIS18BP1 | |
5 | chr5:5547530:A:G | 5547530 | G | 2.80 | 6.33×10-5 | U 63.38 kb MIS18BP1 | |
蛋形指数ESI | 3 | chr3:81386471:A:G | 81386471 | A | -0.05 | 6.66×10-5 | D 13.01 NT5E |
5 | chr5:7009743:G:A | 7009743 | G | 0.06 | 2.77×10-5 | within CDKL1 | |
15 | chr15:11227397:T:C | 11227397 | C | 0.05 | 6.39×10-5 | within AXIN1 | |
15 | chr15:11227409:G:A | 11227409 | A | 0.05 | 7.59×10-5 | within AXIN1 | |
15 | chr15:13294556:C:T | 13294556 | T | 0.05 | 2.39×10-5 | within UBN1 | |
15 | chr15:13395347:A:G | 13395347 | A | 0.05 | 3.49×10-5 | within LOC101799012 | |
15 | chr15:14536844:G:A | 14536844 | A | 0.05 | 1.02×10-5 | U 41.78 kb RBFOX1 | |
16 | chr16:2579629:A:T | 2579629 | T | -0.04 | 5.07×10-5 | within EP400 | |
16 | chr16:3098786:G:A | 3098786 | A | -0.04 | 1.97×10-5 | D 22.42 kb LOC110352440 | |
25 | chr25:6315960:T:C | 6315960 | C | -0.06 | 5.29×10-5 | D 26.17 kb LOC106020386 | |
蛋壳厚度EST | 2 | chr2:22513511:C:A | 22513511 | A | 0.03 | 2.51×10-5 | within ZNF804B |
2 | chr2:22582514:A:G | 22582514 | G | 0.03 | 4.43×10-5 | within ZNF804B | |
2 | chr2:22582670:G:A | 22582670 | A | 0.03 | 6.51×10-5 | within ZNF804B | |
6 | chr6:7192663:G:A | 7192663 | A | 0.03 | 6.46×10-5 | U 18.98 kb KCNK18 | |
6 | chr6:12756206:T:A | 12756206 | A | 0.02 | 7.06×10-5 | within SH3PXD2A | |
12 | chr12:140915:T:A | 140915 | A | -0.02 | 9.44×10-5 | within THSD4 | |
12 | chr12:198263:G:A | 198263 | A | -0.02 | 5.31×10-5 | within THSD4 | |
13 | chr13:5721234:C:T | 5721234 | T | 0.02 | 7.27×10-5 | within LOC106014427 | |
19 | chr19:4873329:A:G | 4873329 | G | 0.02 | 2.69×10-5 | within LOC113845541 | |
蛋壳强度ESS | 5 | chr5:33699890:A:T | 33699890 | T | 0.66 | 6.76×10-5 | within LOC113843881 |
蛋壳颜色L*值 ESCL | 7 | chr7:3182113:T:A | 3182113 | A | -3.45 | 6.81×10-5 | within CTR9 |
7 | chr7:3204268:G:A | 3204268 | A | -3.31 | 6.08×10-5 | U 0.65 kb EIF4G2 | |
7 | chr7:3204312:A:G | 3204312 | G | -3.34 | 6.05×10-5 | U 0.60 kb EIF4G2 | |
7 | chr7:3223217:A:G | 3223217 | G | -3.55 | 1.05×10-5 | U 14.01 kb LOC113844171 | |
7 | chr7:3223320:T:A | 3223320 | A | -3.37 | 9.92×10-6 | U 13.91 kb LOC113844171 | |
14 | chr14:9802965:A:G | 9802965 | G | 2.04 | 5.95×10-5 | within CLINT1 | |
蛋壳颜色a*值 ESCA | 1 | chr1:160744676:G:C | 160744676 | G | -1.09 | 9.13×10-5 | D 3.53 kb PHF5A |
1 | chr1:174907611:C:T | 174907611 | T | -0.89 | 5.86×10-5 | U 19.87 kb GPR85 | |
4 | chr4:6332903:C:G | 6332903 | G | -0.93 | 5.91×10-5 | U 6.34 kb MANBA | |
8 | chr8:10668874:C:A | 10668874 | A | -0.97 | 8.83×10-5 | D 3.43 kb LOC113844346 | |
蛋壳颜色 b*值 ESCB | 1 | chr1:59043295:C:T | 59043295 | T | -1.54 | 7.39×10-5 | U 142.06 kb ARHGEF7 |
1 | chr1:59706095:T:C | 59706095 | C | 1.03 | 6.95×10-5 | D 3.76 kb COL4A2 | |
3 | chr3:16497369:T:C | 16497369 | C | -1.19 | 2.36×10-5 | U 13.30 kb VSX1 | |
4 | chr4:7424076:C:G | 7424076 | G | 1.83 | 6.35×10-5 | within RAP1GDS1 | |
8 | chr8:33254427:C:T | 33254427 | T | 1.20 | 3.93×10-5 | within SLC30A7 | |
蛋白高度AU | 2 | chr2:102420094:T:G | 102420094 | G | -0.89 | 5.83×10-5 | U 14.46 kb RBBP8 |
4 | chr4:5482597:A:C | 5482597 | C | 1.49 | 4.59×10-5 | D 21.57 kb LOC106017184 | |
4 | chr4:71726051:A:G | 71726051 | G | 0.90 | 2.81×10-5 | within LOC106017926 | |
7 | chr7:7414460:C:T | 7414460 | T | 0.80 | 3.39×10-5 | D 1.45 kb LOC106019248 | |
20 | chr20:6093764:T:C | 6093764 | T | 1.30 | 4.41×10-5 | U 5.58 kb SGSM2 | |
20 | chr20:10720431:A:G | 10720431 | G | 1.01 | 3.37×10-5 | U 15.28 kb RTN4RL1 | |
哈氏单位HU | 1 | chr1:111329343:T:C | 111329343 | C | 12.09 | 8.38×10-5 | within TAGLN3 |
4 | chr4:75257160:A:C | 75257160 | A | -8.15 | 3.42×10-5 | U 91.88 kb LOC110353528 | |
7 | chr7:7414460:C:T | 7414460 | T | 6.42 | 5.32×10-5 | D 1.45 kb LOC106019248 | |
20 | chr20:6093764:T:C | 6093764 | T | 10.22 | 8.41×10-5 | U 5.58 kb SGSM2 | |
20 | chr20:10720431:A:G | 10720431 | G | 8.18 | 4.19×10-5 | U 15.28 kb RTN4RL1 | |
蛋黄颜色EYC | 1 | chr1:196541696:G:T | 196541696 | T | 0.75 | 5.41×10-5 | within CAMK1D |
2 | chr2:2433073:A:G | 2433073 | G | 0.94 | 2.65×10-5 | within GJC2 | |
2 | chr2:37584936:A:G | 37584936 | G | 1.01 | 1.99×10-5 | D 60.71 kb SATB1 | |
2 | chr2:37585118:C:T | 37585118 | T | 0.77 | 6.42×10-5 | D 60.53 kb SATB1 | |
2 | chr2:57679783:T:C | 57679783 | C | 0.71 | 6.82×10-5 | within GLI3 | |
2 | chr2:57679906:A:G | 57679906 | G | 0.70 | 9.04×10-5 | within GLI3 | |
2 | chr2:115153719:T:C | 115153719 | C | -0.97 | 5.50×10-5 | within ZNF521 | |
2 | chr2:115178457:C:T | 115178457 | T | -1.10 | 5.57×10-5 | within ZNF521 | |
3 | chr3:51410494:C:T | 51410494 | T | -0.80 | 5.15×10-5 | within RMND1 | |
3 | chr3:51410551:A:G | 51410551 | G | -0.80 | 5.15×10-5 | within RMND1 | |
6 | chr6:6402767:G:A | 6402767 | A | -0.85 | 8.86×10-5 | within CACUL1 | |
7 | chr7:10854039:A:G | 10854039 | G | -1.28 | 6.98×10-5 | within MAP2 | |
9 | chr9:22162962:T:G | 22162962 | G | -1.08 | 4.62×10-5 | within NYAP2 | |
9 | chr9:22163003:A:G | 22163003 | G | -1.07 | 5.51×10-5 | within NYAP2 | |
9 | chr9:22163123:T:C | 22163123 | C | -1.07 | 5.51×10-5 | within NYAP2 | |
9 | chr9:22490118:C:T | 22490118 | C | -0.96 | 6.18×10-6 | within LOC106018641 | |
9 | chr9:22490249:A:G | 22490249 | A | -0.83 | 2.13×10-5 | within LOC106018641 | |
9 | chr9:22628656:T:C | 22628656 | C | -0.97 | 5.97×10-5 | within IRS1 | |
9 | chr9:22636905:C:T | 22636905 | T | -1.04 | 4.55×10-5 | within IRS1 | |
9 | chr9:22798030:T:C | 22798030 | C | -0.92 | 1.94×10-5 | within COL4A3 | |
9 | chr9:22841648:T:C | 22841648 | C | -0.95 | 6.18×10-5 | within COL4A3 | |
9 | chr9:23005131:A:G | 23005131 | G | -1.04 | 7.05×10-5 | within DAW1 | |
14 | chr14:1139032:G:A | 1139032 | A | -0.90 | 2.55×10-5 | within ZIC4 | |
24 | chr24:3527498:A:G | 3527498 | A | 0.74 | 7.73×10-5 | within EPB41 | |
蛋黄重EYW | 2 | chr2:2865193:A:G | 2865193 | A | -2.66 | 6.56×10-5 | U 2.17 kb SEC22C |
9 | chr9:11219039:A:G | 11219039 | G | 2.15 | 9.42×10-5 | within TP63 | |
9 | chr9:11360616:G:A | 11360616 | A | 2.27 | 4.28×10-5 | within TP63 | |
9 | chr9:11360684:A:G | 11360684 | G | 2.27 | 4.43×10-5 | within TP63 | |
蛋黄比例EYP | 2 | chr2:129285222:C:T | 129285222 | T | -6.95 | 6.53×10-5 | within RMDN1 |
5 | chr5:8855150:G:A | 8855150 | A | 5.41 | 6.83×10-5 | D 19.17 kb LOC110352963 | |
6 | chr6:708965:T:C | 708965 | C | 6.13 | 2.71×10-5 | within DPYSL4 |
[1] |
LIU Z, SUN C J, YAN Y Y, LI G Q, SHI F Y, WU G Q, LIU A Q, YANG N. Genetic variations for egg quality of chickens at late laying period revealed by genome-wide association study. Scientific Reports, 2018, 8: 10832. doi:10.1038/s41598-018-29162-7.
doi: 10.1038/s41598-018-29162-7 pmid: 30018363 |
[2] |
GAO G, GAO D, ZHAO X, XU S, ZHANG K, WU R, YIN C, LI J, XIE Y, HU S, WANG Q. Genome-wide association study-based identification of SNPs and haplotypes associated with goose reproductive performance and egg quality. Front Genet, 2021, 12: 602583. doi:10.3389/fgene.2021.602583.
doi: 10.3389/fgene.2021.602583 |
[3] |
LIU H, ZHOU Z, HU J, GUO Z, XU Y, LI Y, WANG L, FAN W, LIANG S, LIU D, ZHANG Y, XIE M, TANG J, HUANG W, ZHANG Q, HOU S. Genetic variations for egg internal quality of ducks revealed by genome-wide association study. Animal Genetics, 2021, 52(4): 536-541. doi:10.1111/age.13063.
doi: 10.1111/age.13063 |
[4] |
LIU W, LI D, LIU J, CHEN S, QU L, ZHENG J, XU G, YANG N. A genome-wide SNP scan reveals novel loci for egg production and quality traits in white leghorn and brown-egg dwarf layers. PLoS ONE, 2011, 6(12): e28600. doi:10.1371/journal.pone.0028600.
doi: 10.1371/journal.pone.0028600 |
[5] |
WOLC A, ARANGO J, JANKOWSKI T, DUNN I, SETTAR P, FULTON J E, O'SULLIVAN N P, PREISINGER R, FERNANDO R L, GARRICK D J, DEKKERS J C. Genome-wide association study for egg production and quality in layer chickens. Journal of Animal Breeding and Genetics, 2014, 131(3): 173-182. doi:10.1111/jbg.12086.
doi: 10.1111/jbg.12086 pmid: 24628796 |
[6] |
ZHANG G X, FAN Q C, WANG J Y, ZHANG T, XUE Q, SHI H Q. Genome-wide association study on reproductive traits in Jinghai Yellow Chicken. Animal Reproduction Science, 2015, 163: 30-34. doi:10.1016/j.anireprosci.2015.09.011.
doi: 10.1016/j.anireprosci.2015.09.011 pmid: 26498507 |
[7] |
SUN C, QU L, YI G, YUAN J, DUAN Z, SHEN M, QU L, XU G, WANG K, YANG N. Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2 resource population. BMC Genomics, 2015, 16: 565. doi:10.1186/s12864-015-1795-7.
doi: 10.1186/s12864-015-1795-7 |
[8] |
LIAO R, ZHANG X, CHEN Q, WANG Z, WANG Q, YANG C, PAN Y. Genome-wide association study reveals novel variants for growth and egg traits in Dongxiang blue-shelled and White Leghorn chickens. Anim Genet, 2016, 47(5): 588-596. doi:10.1111/age.12456.
doi: 10.1111/age.12456 pmid: 27166871 |
[9] |
QU L, SHEN M, GUO J, WANG X, DOU T, HU Y, LI Y, MA M, WANG K, LIU H. Identification of potential genomic regions and candidate genes for egg albumen quality by a genome-wide association study. Archives Animal Breeding, 2019, 62(1): 113-123. doi:10.5194/aab-62-113-2019.
doi: 10.5194/aab-62-113-2019 pmid: 31807621 |
[10] | 王珍珍. 不同蛋鸭品种产蛋性能的比较分析及绍兴鸭产蛋性能的全基因组关联分析[D]. 金华: 浙江师范大学, 2020. |
WANG Z Z. Analysis on egg quality traits of four laying duck breeds and genome-wide association study of laying performance in Shaoxing duck[D]. Jinhua: Zhejiang Normal University, 2020. (in Chinese) | |
[11] |
孙艳发, 李焰, 林如龙, 陈红萍, 吴琼, 李建磊, 陈羽, 林泽. 龙岩山麻鸭产蛋量和蛋重性状的遗传参数估计. 中国畜牧杂志, 2020, 56(10): 51-55. doi:10.19556/j.0258-7033.20191022-03.
doi: 10.19556/j.0258-7033.20191022-03 |
SUN Y F, LI Y, LIN R L, CHEN H P, WU Q, LI J L, CHEN Y, LIN Z. Estimation of genetic parameters for egg production and weight traits in Longyan Shan-ma duck. Chinese Journal of Animal Science, 2020, 56(10): 51-55. doi:10.19556/j.0258-7033.20191022-03. (in Chinese)
doi: 10.19556/j.0258-7033.20191022-03 |
|
[12] |
ROWAN B A, SEYMOUR D K, CHAE E, LUNDBERG D S, WEIGEL D. Methods for genotyping-by-sequencing. Methods in Molecular Biology (Clifton, N J), 2017, 1492: 221-242. doi:10.1007/978-1-4939-6442-0_16.
doi: 10.1007/978-1-4939-6442-0_16 |
[13] |
LI H, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760. doi:10.1093/bioinformatics/btp324.
doi: 10.1093/bioinformatics/btp324 pmid: 19451168 |
[14] |
HUANG Y H, LI Y R, BURT D W, CHEN H L, ZHANG Y, QIAN W B, KIM H, GAN S Q, ZHAO Y Q, LI J W, YI K, FENG H P, ZHU P Y, LI B, LIU Q Y, FAIRLEY S, MAGOR K E, DU Z L, HU X X, GOODMAN L, TAFER H, VIGNAL A, LEE T, KIM K W, SHENG Z Y, AN Y, SEARLE S, HERRERO J, GROENEN M A M, CROOIJMANS R P M A, FARAUT T, CAI Q L, WEBSTER R G, ALDRIDGE J R, WARREN W C, BARTSCHAT S, KEHR S, MARZ M, STADLER P F, SMITH J, KRAUS R H S, ZHAO Y F, REN L M, FEI J, MORISSON M, KAISER P, GRIFFIN D K, RAO M, PITEL F, WANG J, LI N. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nature Genetics, 2013, 45(7): 776-783. doi:10.1038/ng.2657.
doi: 10.1038/ng.2657 pmid: 23749191 |
[15] |
LI H, HANDSAKER B, WYSOKER A, FENNELL T, RUAN J, HOMER N, MARTH G, ABECASIS G, DURBIN R. 1000 GENOME PROJECT DATA PROCESSING SUBGROUP. The sequence alignment/map format and SAMtools. Microbiology Spectrum, 2009, 25(16): 2078-2079. doi:10.1093/bioinformatics/btp352.
doi: 10.1093/bioinformatics/btp352 |
[16] |
PURCELL S, NEALE B, TODD-BROWN K, THOMAS L, FERREIRA M A, BENDER D, MALLER J, SKLAR P, DE BAKKER P I, DALY M J, SHAM P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. Biological Psychiatry, 2007, 81(3): 559-575. doi:10.1086/519795.
doi: 10.1086/519795 |
[17] | 孙艳发. 基于全基因组关联研究技术筛选鸡产肉和肉品质性状相关候选基因[D]. 扬州: 扬州大学, 2013. |
SUN Y F. Filtration of candidate gene related to meat production and quality traits based on genome-wide association study technique in chickens[D]. Yangzhou: Yangzhou University, 2013. (in Chinese) | |
[18] | DALGAARD P. R Development Core Team (2010): R: a language and environment for statistical computing. 2010. |
[19] |
NICODEMUS K K, LIU W, CHASE G A, TSAI YY, FALLIN M D. Comparison of type I error for multiple test corrections in large single-nucleotide polymorphism studies using principal components versus haplotype blocking algorithms. BMC Genetics, 2005, 6(Supplement 1):S78. doi: 10.1186/1471-2156-6-S1-S78.
doi: 10.1186/1471-2156-6-S1-S78 |
[20] |
PRICE A L, PATTERSON N J, PLENGE R M, WEINBLATT M E, SHADICK N A, REICH D. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 2006, 38(8): 904-909. doi:10.1038/ng1847.
doi: 10.1038/ng1847 pmid: 16862161 |
[21] |
SUN Y, ZHAO G, LIU R, ZHENG M, HU Y, WU D, ZHANG L, LI P, WEN J. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genomics, 2013, 14: 458. doi:10.1186/1471-2164-14-458.
doi: 10.1186/1471-2164-14-458 pmid: 23834466 |
[22] |
ZHU F, CHENG S R, YANG Y Z, HAO J P, YANG F X, HOU Z C. Genome-wide association study of growth and feeding traits in Pekin ducks. Frontiers in Genetics, 2019, 10: 702. doi:10.3389/fgene.2019.00702.
doi: 10.3389/fgene.2019.00702 pmid: 31404312 |
[23] |
DENG M T, ZHU F, YANG Y Z, YANG F X, HAO J P, CHEN S R, HOU Z C. Genome-wide association study reveals novel loci associated with body size and carcass yields in Pekin ducks. BMC Genomics, 2019, 20(1): 1. doi:10.1186/s12864-018-5379-1.
doi: 10.1186/s12864-018-5379-1 |
[24] |
DENG M T, ZHANG F, ZHU F, YANG Y Z, YANG F X, HAO J P, HOU Z C. Genome-wide association study reveals novel loci associated with fat-deposition and meat-quality traits in Pekin ducks. Animal Genetics, 2020, 51(6): 953-957. doi:10.1111/age.12995.
doi: 10.1111/age.12995 |
[25] |
LI G S, LIU W W, ZHANG F, ZHU F, YANG F X, HAO J P, HOU Z C. Genome-wide association study of bone quality and feed efficiency-related traits in Pekin ducks. Genomics, 2020, 112(6): 5021-5028. doi:10.1016/j.ygeno.2020.09.023.
doi: 10.1016/j.ygeno.2020.09.023 |
[26] |
ZHU F, CUI Q Q, YANG Y Z, HAO J P, YANG F X, HOU Z C. Genome-wide association study of the level of blood components in Pekin ducks. Genomics, 2020, 112(1): 379-387. doi:10.1016/j.ygeno.2019.02.017.
doi: S0888-7543(18)30637-2 pmid: 30818062 |
[27] |
LI G S, ZHU F, ZHANG F, YANG F X, HAO J P, HOU Z C. Genome-wide association study reveals novel loci associated with feeding behavior in Pekin ducks. BMC Genomics, 2021, 22(1): 334. doi:10.1186/s12864-021-07668-1.
doi: 10.1186/s12864-021-07668-1 |
[28] |
LIU D P, FAN W L, XU Y X, YU S M, LIU W J, GUO Z B, HUANG W, ZHOU Z K, HOU S S. Genome-wide association studies demonstrate that TASP1 contributes to increased muscle fiber diameter. Heredity, 2021, 126(6): 991-999. doi:10.1038/s41437-021-00425-w.
doi: 10.1038/s41437-021-00425-w pmid: 33767369 |
[29] |
WANG L C, RUAN Z T, WU Z W, YU Q L, CHEN F, ZHANG X F, ZHANG F M, LINHARDT R J, LIU Z G. Geometrical characteristics of eggs from 3 poultry species. Poultry Science, 2021, 100(3): 100965. doi:10.1016/j.psj.2020.12.062.
doi: 10.1016/j.psj.2020.12.062 |
[30] |
STODDARD M C, YONG E H, AKKAYNAK D, SHEARD C, TOBIAS J A, MAHADEVAN L. Avian egg shape: Form, function, and evolution. Science, 2017, 356(6344): 1249-1254. doi:10.1126/science.aaj1945.
doi: 10.1126/science.aaj1945 pmid: 28642430 |
[31] |
LIN R L, CHEN H P, ROUVIER R, MARIE-ETANCELIN C. Genetic parameters of body weight, egg production, and shell quality traits in the Shan Ma laying duck (Anas platyrhynchos). Poultry Science, 2016, 95(11): 2514-2519. doi:10.3382/ps/pew222.
doi: 10.3382/ps/pew222 pmid: 27520070 |
[32] |
DUMAN M, ŞEKEROĞLU A, YıLDıRıM A, ELEROĞLU H, CAMCı. Relation Between Egg Shape Index and Egg Quality Characteristics. Stuttgart: Verlag Eugen Ulmer, 2016. doi:10.1399/eps.2016.117.
doi: 10.1399/eps.2016.117 |
[33] |
RIZZI C. Yield performance, laying behaviour traits and egg quality of purebred and hybrid hens reared under outdoor conditions. Animals, 2020, 10(4): E584. doi:10.3390/ani10040584.
doi: 10.3390/ani10040584 |
[34] |
WANG X, WANG H, ZHANG R, LI D, GAO M Q. LRRC75A antisense lncRNA1 knockout attenuates inflammatory responses of bovine mammary epithelial cells. International Journal of Biological Sciences, 2020, 16(2): 251-263. doi:10.7150/ijbs.38214.
doi: 10.7150/ijbs.38214 pmid: 31929753 |
[35] |
CHEN J, LAN J, YE Z, DUAN S, HU Y, ZOU Y, ZHOU J. Long noncoding RNA LRRC75A-AS1 inhibits cell proliferation and migration in colorectal carcinoma. Experimental Biology and Medicine (Maywood, N J), 2019, 244(14): 1137-1143. doi:10.1177/1535370219874339.
doi: 10.1177/1535370219874339 |
[36] |
LI S J, WU D, JIA H Y, ZHANG Z R. Long non-coding RNA LRRC75A-AS1 facilitates triple negative breast cancer cell proliferation and invasion via functioning as a ceRNA to modulate BAALC. Cell Death & Disease, 2020, 11: 643. doi:10.1038/s41419-020-02821-2.
doi: 10.1038/s41419-020-02821-2 |
[37] |
BERTONI A P S, BRACCO P A, DE CAMPOS R P, LUTZ B S, ASSIS-BRASIL B M, DE SOUZA MEYER E L, SAFFI J, BRAGANHOL E, FURLANETTO T W, WINK M R. Activity of ecto-5'-nucleotidase (NT5E/CD73) is increased in papillary thyroid carcinoma and its expression is associated with metastatic lymph nodes. Molecular and Cellular Endocrinology, 2019, 479: 54-60. doi:10.1016/j.mce.2018.08.013.
doi: S0303-7207(18)30262-4 pmid: 30184475 |
[38] |
SUN W, YAO L, JIANG B, SHAO H, ZHAO Y, WANG Q. A role for Cdkl1 in the development of gastric cancer. Acta Oncologica (Stockholm, Sweden), 2012, 51(6): 790-796. doi:10.3109/0284186x.2012.665611.
doi: 10.3109/0284186x.2012.665611 |
[39] |
LIU H, WANG L, GUO Z, XU Q, FAN W, XU Y, HU J, ZHANG Y, TANG J, XIE M, ZHOU Z, HOU S. Genome-wide association and selective sweep analyses reveal genetic loci for FCR of egg production traits in ducks. Genetics, Selection, Evolution, 2021, 53(1): 98. doi:10.1186/s12711-021-00684-5.
doi: 10.1186/s12711-021-00684-5 |
[40] | 蒋晶晶. 三种家禽蛋壳厚度整齐性及蛋壳形状指标的研究[D]. 杭州: 浙江农林大学, 2020. |
JIANG J J. The uniformity of eggshell thickness and eggshell shape indicators of three poultry[D]. Hangzhou: Zhejiang A & F University, 2020. (in Chinese) | |
[41] |
ZHANG Y N, DENG Y Z, JIN Y Y, WANG S, HUANG X B, LI K C, XIA W G, RUAN D, WANG S L, CHEN W, ZHENG C T. Age-related changes in eggshell physical properties, ultrastructure, calcium metabolism-related serum indices, and gene expression in eggshell gland during eggshell formation in commercial laying ducks. Poultry Science, 2022, 101(2): 101573. doi:10.1016/j.psj.2021.101573.
doi: 10.1016/j.psj.2021.101573 |
[42] |
ZHANG F, YIN Z T, ZHANG J F, ZHU F, HINCKE M, YANG N, HOU Z C. Integrating transcriptome, proteome and QTL data to discover functionally important genes for duck eggshell and albumen formation. Genomics, 2020, 112(5): 3687-3695. doi:10.1016/j.ygeno.2020.04.015.
doi: S0888-7543(20)30003-3 pmid: 32334113 |
[43] |
FORREST M P, HILL M J, QUANTOCK A J, MARTIN-RENDON E, BLAKE D J. The emerging roles of TCF4 in disease and development. Trends in Molecular Medicine, 2014, 20(6): 322-331. doi:10.1016/j.molmed.2014.01.010.
doi: 10.1016/j.molmed.2014.01.010 |
[44] |
ISMAIL A B, NAJI M ' S, NEBIH İ, TUNCEL G, OZBAKIR B, TEMEL S G, TULAY P, MOCAN G, ERGOREN M C. The expression profile of WNT/β-catanin signalling genes in human oocytes obtained from polycystic ovarian syndrome (PCOS) patients. Zygote (Cambridge, England), 2022, 30(4): 536-542. doi:10.1017/s0967199422000028.
doi: 10.1017/s0967199422000028 |
[45] |
CHUNG J, WANG X L, MARUYAMA T, MA Y Y, ZHANG X L, MEZ J, SHERVA R, TAKEYAMA H, LUNETTA K L, FARRER L A, JUN G R. Genome-wide association study of Alzheimer's disease endophenotypes at prediagnosis stages. Alzheimer's & Dementia, 2018, 14(5): 623-633. doi:10.1016/j.jalz.2017.11.006.
doi: 10.1016/j.jalz.2017.11.006 |
[46] |
IMBRICI P, NEMATIAN-ARDESTANI E, HASAN S, PESSIA M, TUCKER S J, D’ADAMO M C. Altered functional properties of a missense variant in the TRESK K^+ channel (KCNK18) associated with migraine and intellectual disability. Pflügers Archiv - European Journal of Physiology, 2020, 472(7): 923-930. doi:10.1007/s00424-020-02382-5.
doi: 10.1007/s00424-020-02382-5 |
[47] |
CEJUDO-MARTIN P, YUEN A, VLAHOVICH N, LOCK P, COURTNEIDGE S A, DÍAZ B. Genetic disruption of the sh3pxd2a gene reveals an essential role in mouse development and the existence of a novel isoform of tks5. PLoS ONE, 2014, 9(9): e107674. doi:10.1371/journal.pone.0107674.
doi: 10.1371/journal.pone.0107674 |
[48] |
ELBITAR S, RENARD M, ARNAUD P, HANNA N, JACOB M P, GUO D C, TSUTSUI K, GROSS M S, KESSLER K, TOSOLINI L, DATTILO V, DUPONT S, JONQUET J, LANGEOIS M, BENARROCH L, AUBART M, GHALEB Y, ABOU KHALIL Y, VARRET M, EL KHOURY P, HO-TIN-NOÉ B, ALEMBIK Y, GAERTNER S, ISIDOR B, GOUYA L, MILLERON O, SEKIGUCHI K, MILEWICZ D, DE BACKER J, LE GOFF C, MICHEL J B, JONDEAU G, SAKAI L Y, BOILEAU C, ABIFADEL M. Pathogenic variants in THSD4, encoding the ADAMTS-like 6 protein, predispose to inherited thoracic aortic aneurysm. Genetics in Medicine, 2021, 23(1): 111-122. doi:10.1038/s41436-020-00947-4.
doi: 10.1038/s41436-020-00947-4 |
[49] |
KARUNAJEEWA H, HUGHES R J, MCDONALD M W, SHENSTONE F S. A review of factors influencing pigmentation of egg yolks. World's Poultry Science Journal, 1984, 40(1): 52-65. doi:10.1079/WPS19840006.
doi: 10.1079/WPS19840006 |
[50] |
COPPS K D, WHITE M F. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia, 2012, 55(10): 2565-2582. doi:10.1007/s00125-012-2644-8.
doi: 10.1007/s00125-012-2644-8 pmid: 22869320 |
[51] |
SCHNEIDER A, ZHI X, MOREIRA F, LUCIA T, MONDADORI R G, MASTERNAK M M. Primordial follicle activation in the ovary of Ames dwarf mice. Journal of Ovarian Research, 2014, 7: 120. doi:10.1186/s13048-014-0120-4.
doi: 10.1186/s13048-014-0120-4 pmid: 25543533 |
[52] |
THANGAVELU M, GODLA U R, PAUL S F D, MADDALY R. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G and CAPN10 genes in the pathogenesis of polycystic ovary syndrome. Journal of Genetics, 2017, 96(1): 87-96. doi:10.1007/s12041-017-0749-z.
doi: 10.1007/s12041-017-0749-z pmid: 28360393 |
[53] |
KUTTAPITIYA A, ASSI L, LAING K, HING C, MITCHELL P, WHITLEY G, HARRISON A, HOWE F A, EJINDU V, HERON C, SOFAT N. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Annals of the Rheumatic Diseases, 2017, 76(10): 1764-1773. doi:10.1136/annrheumdis-2017-211396.
doi: 10.1136/annrheumdis-2017-211396 pmid: 28705915 |
[54] |
BRÉGEON M, TOMAS D, BERNAY B, ZATYLNY-GAUDIN C, GEORGEAULT S, LABAS V, RÉHAULT-GODBERT S, GUYOT N. Multifaceted roles of the egg perivitelline layer in avian reproduction: Functional insights from the proteomes of chicken egg inner and outer sublayers. Journal of Proteomics, 2022, 258: 104489. doi:10.1016/j.jprot.2022.104489.
doi: 10.1016/j.jprot.2022.104489 |
[55] |
LESKO S L, ROUHANA L. Dynein assembly factor with WD repeat domains 1 (DAW1) is required for the function of motile cilia in the planarian Schmidtea mediterranea. Development, Growth & Differentiation, 2020, 62(6): 423-437. doi:10.1111/dgd.12669.
doi: 10.1111/dgd.12669 |
[56] |
ELLINGHAUS E, ELLINGHAUS D, KRUSCHE P, GREINER A, SCHREIBER C, NIKOLAUS S, GIEGER C, STRAUCH K, LIEB W, ROSENSTIEL P, FRINGS N, FIEBIG A, SCHREIBER S, FRANKE A. Genome-wide association analysis for chronic venous disease identifies EFEMP1 and KCNH8 as susceptibility loci. Scientific Reports, 2017, 7: 45652. doi:10.1038/srep45652.
doi: 10.1038/srep45652 pmid: 28374850 |
[57] |
SPENCER C C, SU Z, DONNELLY P, MARCHINI J. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genetics, 2009, 5(5): e1000477. doi:10.1371/journal.pgen.1000477.
doi: 10.1371/journal.pgen.1000477 |
[1] | 林萍, 王开良, 姚小华, 任华东. 基于转录组SNP构建油茶主要品种资源的分子身份证[J]. 中国农业科学, 2023, 56(2): 217-235. |
[2] | 王凯,张海亮,董祎鑫,陈少侃,郭刚,刘林,王雅春. 基于牧场管理数据的奶牛健康性状定义及遗传参数估计[J]. 中国农业科学, 2022, 55(6): 1227-1240. |
[3] | 竹磊,张海亮,陈少侃,安涛,罗汉鹏,刘林,黄锡霞,王雅春. 荷斯坦牛泌乳早期体细胞数对生产性能的影响及遗传参数估计[J]. 中国农业科学, 2022, 55(2): 403-414. |
[4] | 李晓川,王朝海,周平,马维,吴瑞,宋治豪,梅艳. 马铃薯品种(系)田间晚疫病抗性评价和全基因组遗传多样性分析[J]. 中国农业科学, 2022, 55(18): 3484-3500. |
[5] | 张宁波,韩照清,金太花,庄桂玉,李炯奎,郑全胜,李永洙. 琅琊鸡及其配套系蛋壳质量、钙代谢生化指标和钙结合蛋白CaBP-D28k mRNA表达的比较[J]. 中国农业科学, 2021, 54(9): 2017-2026. |
[6] | 张鹏飞,史良玉,刘家鑫,李洋,吴成斌,王立贤,赵福平. 畜禽全基因组长纯合片段检测的研究进展[J]. 中国农业科学, 2021, 54(24): 5316-5326. |
[7] | 彭蕴,雷天刚,邹修平,张靖芸,张庆雯,姚家欢,何永睿,李强,陈善春. 柑橘溃疡病抗性SNP验证及其相关钙依赖性蛋白激酶基因诱导表达[J]. 中国农业科学, 2020, 53(9): 1820-1829. |
[8] | 徐云碧,杨泉女,郑洪建,许彦芬,桑志勤,郭子锋,彭海,张丛,蓝昊发,王蕴波,吴坤生,陶家军,张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用[J]. 中国农业科学, 2020, 53(15): 2983-3004. |
[9] | 张剑搏,袁超,岳耀敬,郭健,牛春娥,王喜军,王丽娟,吕会芹,杨博辉. 不同动物模型对高山美利奴羊早期生长性状遗传参数估计的比较[J]. 中国农业科学, 2018, 51(6): 1202-1212. |
[10] | 田志涛,赵永国,Lenka Havlickova,He Zhesi,Andrea L Harper,Ian Bancroft,邹锡玲,张学昆,陆光远. 甘蓝型油菜种子和角果皮中硫苷含量的动态变化及转录组关联分析[J]. 中国农业科学, 2018, 51(4): 635-651. |
[11] | 曹学涛,裴生伟,张晋,李发弟,李刚,李万宏,乐祥鹏. 绵羊Y染色体特异性引物及SNPs的筛选[J]. 中国农业科学, 2018, 51(15): 2990-2999. |
[12] | 李学武,刘燕,王瑞军,王志英,娜清,李宏伟,王振宇,徐冰冰,苏蕊,张燕军,刘志红,李金泉. 内蒙古绒山羊不同毛被类型产绒量和体重的遗传参数估计[J]. 中国农业科学, 2018, 51(12): 2410-2417. |
[13] | 任小丽,刘澳星,李想,张旭,王雅春,邵怀峰,秦春华,王瑜,温万,张胜利. 用随机回归模型估计宁夏地区荷斯坦牛头胎测定日产奶量遗传参数[J]. 中国农业科学, 2017, 50(10): 1885-1892. |
[14] | 王晓翠,张海军,武书庚,岳洪源,李杰,齐广海. 不同蛋白来源对京红蛋鸡生产性能及蛋品质的影响[J]. 中国农业科学, 2015, 48(10): 2049-2057. |
[15] | 荐红举,魏丽娟,李超,唐章林,李加纳,刘列钊. 基于SNP遗传图谱定位甘蓝型油菜千粒重QTL位点[J]. 中国农业科学, 2014, 47(20): 3953-3961. |
|