[1] |
|
|
GUO K, ZHANG Z N, LI S J, CHU X Y, WANG Y X, GUO W, HU Z, WANG X J. Development and application of a universal iELISA antibody assay for abortion-causing Salmonella in Equidae. Scientia Agricultura Sinica, 2023, 56(12): 2421-2430. doi: 10.3864/j.issn.0578-1752.2023.12.015. (in Chinese)
|
[2] |
ZHANG J M, PENG Z, CHEN K F, ZHAN Z Q, SHEN H Y, FENG S X, GOU H C, QU X Y, ZIEMANN M, LAYTON D S, WANG X R, CHEN H C, WU B, XU X B, LIAO M. Genomic characterization of Salmonella enterica serovar weltevreden associated with human diarrhea. Microbiology Spectrum, 2023, 11(1): e0354222.
|
[3] |
PULFORD C V, PEREZ-SEPULVEDA B M, CANALS R, BEVINGTON J A, BENGTSSON R J, WENNER N, RODWELL E V, KUMWENDA B, ZHU X J, BENNETT R J, et al. Stepwise evolution of Salmonella Typhimurium ST313 causing bloodstream infection in Africa. Nature Microbiology, 2021, 6: 327-338.
|
[4] |
QIN Y N, HASMAN H, AARESTRUP F M, ALWATHNANI H A, RENSING C. Genome sequences of three highly copper-resistant Salmonella enterica subsp. i serovar typhimurium strains isolated from pigs in Denmark. Genome Announcements, 2014, 2(6): e01334-14.
|
[5] |
WANG Y N, LIU Y, LYU N, LI Z Y, MA S F, CAO D M, PAN Y L, HU Y F, HUANG H, GAO G F, XU X B, UNION T B L, ZHU B L. The temporal dynamics of antimicrobial-resistant Salmonella enterica and predominant serovars in China. National Science Review, 2023, 10(3): nwac269.
|
[6] |
WILLIAMSON D A, LANE C R, EASTON M, VALCANIS M, STRACHAN J, VEITCH M G, KIRK M D, HOWDEN B P. Increasing antimicrobial resistance in nontyphoidal Salmonella isolates in Australia from 1979 to 2015. Antimicrobial Agents and Chemotherapy, 2018, 62(2): e02012-17.
|
[7] |
REDDY E A, SHAW A V, CRUMP J A. Community-acquired bloodstream infections in Africa: a systematic review and meta- analysis. The Lancet Infectious Diseases, 2010, 10(6): 417-432.
|
[8] |
CHEN K F, GAO Y, LI L L, ZHANG W X, LI J Y, ZHOU Z P, HE H S, CHEN Z L, LIAO M, ZHANG J M. Increased drug resistance and biofilm formation ability in ST34-type Salmonella typhimurium exhibiting multicellular behavior in China. Frontiers in Microbiology, 2022, 13: 876500.
|
[9] |
涂春田, 汪洋, 易力, 王瑜欣, 刘宝宝, 宫胜龙, 信号分子调控细菌生物被膜形成的分子机制. 生物工程学报, 2019, 35(4): 558-566.
|
|
TU C T, WANG Y, YI L, WANG Y X, LIU B B, GONG S L. Roles of signaling molecules in biofilm formation. Chinese Journal of Biotechnology, 2019, 35(4): 558-566. (in Chinese)
|
[10] |
LI W L, LI Y H, LIU Y, SHI X L, JIANG M, LIN Y M, QIU Y Q, ZHANG Q, CHEN Q C, ZHOU L, SUN Q, HU Q H. Clonal expansion of biofilm-forming Salmonella typhimurium ST34 with multidrug-resistance phenotype in the southern coastal region of China. Frontiers in Microbiology, 2017, 8: 2090.
|
[11] |
SISTI F, HA D G, O’TOOLE G A, HOZBOR D, FERNÁNDEZ J. Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica. Microbiology, 2013, 159(Pt_5): 869-879.
|
[12] |
霍卫萍, 刘智猛, 陈韦, 贾佳, 王媛媛, 张亚妮, 陈谷奎. 铜绿假单胞菌二鸟苷酸环化酶SiaD突变体的功能研究. 微生物学报, 2022, 62(10): 3997-4007.
|
|
HUO W P, LIU Z M, CHEN W, JIA J, WANG Y Y, ZHANG Y N, CHEN G K. Functions of mutants of diguanylate cyclase SiaD from Pseudomonas aeruginosa. Acta Microbiologica Sinica, 2022, 62(10): 3997-4007. (in Chinese)
|
[13] |
RÖMLING U. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae. Cellular and Molecular Life Sciences CMLS, 2005, 62(11): 1234-1246.
|
[14] |
SIMM R, REMMINGHORST U, AHMAD I, ZAKIKHANY K, RÖMLING U. A role for the EAL-Like protein STM1344 in regulation of CsgD expression and motility in Salmonella enterica serovar typhimurium. Journal of Bacteriology, 2009, 191(12): 3928-3937.
|
[15] |
李莉莉, 陈凯风, 陈兵, 周洲平, 王南威, 瞿孝云, 徐成刚, 廖明, 张建民. STM1827在鼠伤寒沙门菌生物被膜形成及环境应激中的调控作用. 畜牧兽医学报, 2023, 54(12): 5207-5217.
doi: 10.11843/j.issn.0366-6964.2023.12.030
|
|
LI L L, CHEN K F, CHEN B, ZHOU Z P, WANG N W, QU X Y, XU C G, LIAO M, ZHANG J M. Regulatory role of STM 1827 in the biofilm formation and environmental stress of Salmonella typhimurium. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5207-5217. (in Chinese)
|
[16] |
RÖMLING U. Cyclic di-GMP signaling in Salmonella enterica serovar Typhimurium. Microbial Cyclic Di-Nucleotide Signaling. Cham: Springer International Publishing, 2020: 395-425.
|
[17] |
DATSENKO K A, WANNER B L. Cyclic di-GMP signaling in Salmonella enterica serovar Typhimurium. Microbial Cyclic Di-Nucleotide Signaling. 2000, 97(12): 6640-6645.
|
[18] |
SPANGLER C, BÖHM A, JENAL U, SEIFERT R, KAEVER V. A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. Journal of Microbiological Methods, 2010, 81(3): 226-231.
doi: 10.1016/j.mimet.2010.03.020
pmid: 20385176
|
[19] |
CIMDINS A, SIMM R. Semiquantitative analysis of the red, dry, and rough colony morphology of Salmonella enterica serovar typhimurium and Escherichia coli using Congo red. c-di-GMP signaling. New York, NY: Springer New York, 2017: 225-241.
|
[20] |
GÓMEZ-BALTAZAR A, VÁZQUEZ-GARCIDUEÑAS M S, LARSEN J, KUK-SOBERANIS M E, VÁZQUEZ-MARRUFO G. Comparative stress response to food preservation conditions of ST19 and ST213 genotypes of Salmonella enterica serotype typhimurium. Food Microbiology, 2019, 82: 303-315.
|
[21] |
DRESSAIRE C, MOREIRA R N, BARAHONA S, ALVES DE MATOS A P, ARRAIANO C M. BolA is a transcriptional switch that turns off motility and turns on biofilm development. mBio, 2015, 6(1): e02352-14.
|
[22] |
CHEN K F, LI L L, ZHOU Z P, WANG N W, DAI C Z, SUN D G, LI J Y, XU C G, LIAO M, ZHANG J M. BolA promotes the generation of multicellular behavior in S. Typhimurium by regulating the c-di-GMP pathway genes yeaJ and yhjH. International Journal of Food Microbiology, 2024, 411: 110518.
|
[23] |
ALEKSANDROWICZ A, CAROLAK E, DUTKIEWICZ A, BŁACHUT A, WASZCZUK W, GRZYMAJLO K. Better together-Salmonella biofilm-associated antibiotic resistance. Gut Microbes, 2023, 15(1): 2229937.
|
[24] |
PANG X Y, YANG Y S, YUK H G. Biofilm formation and disinfectant resistance of Salmonella sp. in mono‐and dual‐species with Pseudomonas aeruginosa. Journal of Applied Microbiology, 2017, 123(3): 651-660.
|
[25] |
CHRISTEN M, CHRISTEN B, FOLCHER M, SCHAUERTE A, JENAL U. Identification and characterization of a cyclic di-GMP- specific phosphodiesterase and its allosteric control by GTP. Journal of Biological Chemistry, 2005, 280(35): 30829-30837.
|
[26] |
FLEMMING H C, WINGENDER J. The biofilm matrix. Nature Reviews Microbiology, 2010, 8: 623-633.
|
[27] |
KARATAN E, WATNICK P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews, 2009, 73(2): 310-347.
doi: 10.1128/MMBR.00041-08
pmid: 19487730
|
[28] |
AIZAWA S I. Flagellar assembly in Salmonella typhimurium. Molecular Microbiology, 1996, 19(1): 1-5.
|
[29] |
BELOIN C, ROUX A, GHIGO J M. Escherichia coli biofilms. ROMEO T, ed. Current Topics in Microbiology and Immunology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 249-289.
|
[30] |
JIANG Y, WANG Z Y, LI Q C, LU M J, WU H, MEI C Y, SHEN P C, JIAO X N, WANG J. Characterization of extensively drug-resistant Salmonella enterica serovar Kentucky sequence type 198 isolates from chicken meat products in Xuancheng, China. Microbiology Spectrum, 2023, 11(2): e0321922.
|
[31] |
JANSSEN R, VAN DER STRAATEN T, VAN DIEPEN A, VAN DISSEL J T. Responses to reactive oxygen intermediates and virulence of Salmonella typhimurium. Microbes and Infection, 2003, 5(6): 527-534.
|