[1] |
ODEYEMI O A, ALEGBELEYE O O, STRATEVA M, STRATEV D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(2): 311-331.
doi: 10.1111/1541-4337.12526
pmid: 33325162
|
[2] |
BOTTA C, FERROCINO I, CAVALLERO M C, RIVA S, GIORDANO M, COCOLIN L. Potentially active spoilage bacteria community during the storage of vacuum packaged beefsteaks treated with aqueous ozone and electrolyzed water. International Journal of Food Microbiology, 2018, 266: 337-345.
doi: S0168-1605(17)30421-X
pmid: 29033074
|
[3] |
CALDERA L, FRANZETTI L, VAN COILLIE E, DE VOS P, STRAGIER P, DE BLOCK J, HEYNDRICKX M. Identification, enzymatic spoilage characterization and proteolytic activity quantification of Pseudomonas spp. isolated from different foods. Food Microbiology, 2016, 54: 142-153.
doi: 10.1016/j.fm.2015.10.004
|
[4] |
MOHAREB F, IRIONDO M, DOULGERAKI A I, VAN HOEK A, AARTS H, CAUCHI M, NYCHAS G J E. Identification of meat spoilage gene biomarkers in Pseudomonas putida using gene profiling. Food Control, 2015, 57: 152-160.
doi: 10.1016/j.foodcont.2015.04.007
|
[5] |
WANG G Y, WANG H H, HAN Y W, XING T, YE K P, XU X L, ZHOU G H. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiology, 2017, 63: 139-146.
doi: 10.1016/j.fm.2016.11.015
|
[6] |
MANSUR A R, SONG E J, CHO Y S, NAM Y D, CHOI Y S, KIM D O, SEO D H, NAM T G. Comparative evaluation of spoilage- related bacterial diversity and metabolite profiles in chilled beef stored under air and vacuum packaging. Food Microbiology, 2019, 77: 166-172.
doi: 10.1016/j.fm.2018.09.006
|
[7] |
YANG X Y, ZHU L X, ZHANG Y M, LIANG R R, LUO X. Microbial community dynamics analysis by high-throughput sequencing in chilled beef longissimus steaks packaged under modified atmospheres. Meat Science, 2018, 141: 94-102.
doi: S0309-1740(17)31315-3
pmid: 29606393
|
[8] |
ZOTTA T, PARENTE E, IANNIELLO R G, DE FILIPPIS F, RICCIARDI A. Dynamics of bacterial communities and interaction networks in thawed fish fillets during chilled storage in air. International Journal of Food Microbiology, 2019, 293: 102-113.
doi: S0168-1605(18)30599-3
pmid: 30677559
|
[9] |
WICKRAMASINGHE N N, RAVENSDALE J, COOREY R, CHANDRY S P, DYKES G A. The predominance of psychrotrophic pseudomonads on aerobically stored chilled red meat. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(5): 1622-1635.
doi: 10.1111/crf3.v18.5
|
[10] |
DE FILIPPIS F, LA STORIA A, VILLANI F, ERCOLINI D. Strain-level diversity analysis of Pseudomonas fragi after in situ pangenome reconstruction shows distinctive spoilage-associated metabolic traits clearly selected by different storage conditions. Applied and Environmental Microbiology, 2019, 85(1): e02212- e02218.
|
[11] |
王光宇, 李晴, 唐文倩, 王虎虎, 徐幸莲, 邱伟芬. nuoB对莓实假单胞菌生理特性及在冷鲜鸡肉中致腐能力的影响. 中国农业科学, 2021, 54(8): 1761-1771.
doi: 10.3864/j.issn.0578-1752.2021.08.015
|
|
WANG G Y, LI Q, TANG W Q, WANG H H, XU X L, QIU W F. Effects of nuoB on physiological properties of Pseudomonas fragi and its spoilage potential in chilled chicken. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771. (in Chinese)
|
[12] |
HIRST J. Towards the molecular mechanism of respiratory complex I. Biochemical Journal, 2010, 425(2): 327-339.
doi: 10.1042/BJ20091382
|
[13] |
SHARMA L, LU J X, BAI Y D. Mitochondrial respiratory complex I: Structure, function and implication in human diseases. Current Medicinal Chemistry, 2009, 16(10): 1266-1277.
doi: 10.2174/092986709787846578
|
[14] |
SPERO M A, AYLWARD F O, CURRIE C R, DONOHUE T J. Phylogenomic analysis and predicted physiological role of the proton-translocating NADH: Quinone oxidoreductase (Complex I) across bacteria. MBio, 2015, 6(2): e00389-15.
|
[15] |
OPPERMANN S, SENG K, SHWEICH L, FRIEDRICH T. The gene order in the nuo-operon is not essential for the assembly of E. coli complex I. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2022, 1863(7): 148592.
|
[16] |
FORMOSA L E, DIBLEY M G, STROUD D A, RYAN M T. Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Seminars in Cell & Developmental Biology, 2018, 76: 154-162.
|
[17] |
FRIEDRICH T, DEKOVIC D K, BURSCHEL S. Assembly of the Escherichia coli NADH: ubiquinone oxidoreductase (respiratory complex I). Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2016, 1857(3): 214-223.
doi: 10.1016/j.bbabio.2015.12.004
|
[18] |
FLEMMING D, HELLWIG P, FRIEDRICH T. Involvement of tyrosines 114 and 139 of subunit NuoB in the proton pathway around cluster N2 in Escherichia coliNADH: Ubiquinone oxidoreductase. Journal of Biological Chemistry, 2003, 278(5): 3055-3062.
doi: 10.1074/jbc.M208849200
|
[19] |
SCHNEIDER D, POHL T, WALTER J, DÖRNER K, KOHLSTÄDT M, BERGER A, SPEHR V, FRIEDRICH T. Assembly of the Escherichia coli NADH: Ubiquinone oxidoreductase (complex I). Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2008, 1777(7/8): 735-739.
doi: 10.1016/j.bbabio.2008.03.003
|
[20] |
PRÜSS B M, NELMS J M, PARK C, WOLFE A J. Mutations in NADH: Ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. Journal of Bacteriology, 1994, 176(8): 2143-2150.
doi: 10.1128/jb.176.8.2143-2150.1994
|
[21] |
王光宇. 气调包装对冷鲜鸡肉中莓实假单胞菌致腐效应的抑制机制[D]. 南京: 南京农业大学, 2018.
|
|
WANG G Y. Inhibition mechanism of modified atmosphere packaging on the rotting effect of Pseudomonas berberis in chilled chicken[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese)
|
[22] |
FENG J S, LAMOUR G, XUE R, MIRVAKLIKI M N, HATZIKIRIAKOS S G, XU J, LI H B, WANG S, LU X N. Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress. International Journal of Food Microbiology, 2016, 238: 172-182.
doi: 10.1016/j.ijfoodmicro.2016.09.008
|
[23] |
PANG X Y, CHEN L, YUK H G. Stress response and survival of Salmonella Enteritidis in single and dual species biofilms with Pseudomonas fluorescens following repeated exposure to quaternary ammonium compounds. International Journal of Food Microbiology, 2020, 325: 108643.
doi: 10.1016/j.ijfoodmicro.2020.108643
|
[24] |
WANG G Y, MA F, WANG H H, XU X L, ZHOU G H. Characterization of extracellular polymeric substances produced byPseudomonas fragi under air and modified atmosphere packaging. Journal of Food Science, 2017, 82(9): 2151-2157.
doi: 10.1111/1750-3841.13832
|
[25] |
ZHANG T, DING H, CHEN L, ZHANG S S, WU P F, XIE K Z, PAN Z M, ZHANG G X, DAI G J, WU H Q, WANG J Y. Characterization of chilled chicken spoilage using an integrated microbiome and metabolomics analysis. Food Research International, 2021, 144: 110328.
doi: 10.1016/j.foodres.2021.110328
|
[26] |
ZHANG P P, BADONI M, GÄNZLE M, YANG X Q. Growth of Carnobacterium spp. isolated from chilled vacuum-packaged meat under relevant acidic conditions. International Journal of Food Microbiology, 2018, 286: 120-127.
doi: 10.1016/j.ijfoodmicro.2018.07.032
|
[27] |
MA K, ZHAO H X, ZHANG C, LU Y, XING X H. Impairment of NADH dehydrogenase for increased hydrogen production and its effect on metabolic flux redistribution in wild strain and mutants of Enterobacter aerogenes. International Journal of Hydrogen Energy, 2012, 37(21): 15875-15885.
doi: 10.1016/j.ijhydene.2012.08.017
|
[28] |
WICKRAMASINGHE N N, RAVENSDALE J, COOREY R, DYKES G A, CHANDRY P S. Transcriptional profiling of biofilms formed on chilled beef by psychrotrophic meat spoilage bacterium, Pseudomonas fragi 1793. Biofilm, 2021, 3: 100045.
|
[29] |
FROST I, SMITH W P J, MITRI S, MILLAN A S, DAVIT Y, OSBORNE J M, PITT-FRANCIS J M, MACLEAN R C, FOSTER K R. Cooperation, competition and antibiotic resistance in bacterial colonies. The ISME Journal, 2018, 12(6): 1582-1593.
doi: 10.1038/s41396-018-0090-4
|
[30] |
MITRI S, CLARKE E, FOSTER K R. Resource limitation drives spatial organization in microbial groups. The ISME Journal, 2016, 10(6): 1471-1482.
doi: 10.1038/ismej.2015.208
|
[31] |
NG J, KIDD S P. The concentration of intracellular nickel in Haemophilus influenzae is linked to its surface properties and cell-cell aggregation and biofilm formation. International Journal of Medical Microbiology, 2013, 303(3): 150-157.
doi: 10.1016/j.ijmm.2013.02.012
|
[32] |
BOVE P, CAPOZZI V, GAROFALO C, RIEU A, SPANO G, FIOCCO D. Inactivation of the ftsH gene of Lactobacillus plantarum WCFS1: Effects on growth, stress tolerance, cell surface properties and biofilm formation. Microbiological Research, 2012, 167(4): 187-193.
doi: 10.1016/j.micres.2011.07.001
|
[33] |
ASHRAFUDOULLA M, MIZAN M F R, HA A J W, PARK S H, HA S D. Antibacterial and antibiofilm mechanism of eugenol against antibiotic resistance Vibrio parahaemolyticus. Food Microbiology, 2020, 91: 103500.
doi: 10.1016/j.fm.2020.103500
|
[34] |
WICKRAMASINGHE N N, RAVENSDALE J T, COOREY R, DYKES G A, SCOTT CHANDRY P. In situ characterisation of biofilms formed by psychrotrophic meat spoilage pseudomonads. Biofouling, 2019, 35(8): 840-855.
doi: 10.1080/08927014.2019.1669021
|
[35] |
YAN J, NADELL C D, STONE H A, WINGREEN N S, BASSLER B L. Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nature Communications, 2017, 8(1): 1-11.
doi: 10.1038/s41467-016-0009-6
|
[36] |
NADELL C D, DRESCHER K, WINGREEN N S, BASSLER B L. Extracellular matrix structure governs invasion resistance in bacterial biofilms. The ISME Journal, 2015, 9(8): 1700-1709.
doi: 10.1038/ismej.2014.246
|
[37] |
LIU F, SUN Z L, WANG F T, LIU Y W, ZHU Y Z, DU L H, WANG D Y, XU W M. Inhibition of biofilm formation and exopolysaccharide synthesis of Enterococcus faecalis by phenyllactic acid. Food Microbiology, 2020, 86: 103344.
doi: 10.1016/j.fm.2019.103344
|
[38] |
SUN E. The regulation and characterization of surfing motility in Pseudomonas aeruginosa[D]. Vancouver: University of British Columbia, 2019.
|
[39] |
EVANS C R, KEMPES C P, PRICE-WHELAN A, DIETRICH L E P. Metabolic heterogeneity and cross-feeding in bacterial multicellular systems. Trends in Microbiology, 2020, 28(9): 732-743.
doi: S0966-842X(20)30079-2
pmid: 32781027
|
[40] |
FLEMMING H C, WINGENDER J. The biofilm matrix. Nature Reviews Microbiology, 2010, 8(9): 623-633.
doi: 10.1038/nrmicro2415
|
[41] |
RATHER M A, GUPTA K, BARDHAN P, BORAH M, SARKAR A, ELDIEHY K S H, BHUYAN S, MANDAL M. Microbial biofilm: A matter of grave concern for human health and food industry. Journal of Basic Microbiology, 2021, 61(5): 380-395.
doi: 10.1002/jobm.202000678
pmid: 33615511
|
[42] |
WANG Y Y, HONG X L, LIU J C, ZHU J L, CHEN J R. Interactions between fish isolates Pseudomonas fluorescens and Staphylococcus aureus in dual-species biofilms and sensitivity to carvacrol. Food Microbiology, 2020, 91: 103506.
doi: 10.1016/j.fm.2020.103506
|
[43] |
WAGNER E M, FISCHEL K, RAMMER N, BEER C, PALMETZHOFER A L, CONRADY B, ROCH F F, HANSON B T, WAGNER M, RYCHLI K. Bacteria of eleven different species isolated from biofilms in a meat processing environment have diverse biofilm forming abilities. International Journal of Food Microbiology, 2021, 349: 109232.
doi: 10.1016/j.ijfoodmicro.2021.109232
|
[44] |
WU Y J, MA F, PANG X Y, CHEN Y P, NIU A J, TAN S, CHEN X, QIU W F, WANG G Y. Involvement of AprD in regulating biofilm structure, matrix secretion, and cell metabolism of meat-borne Pseudomonas fragi during chilled storage. Food Research International, 2022, 157: 111400.
doi: 10.1016/j.foodres.2022.111400
|
[45] |
ZHAO Y N, REN J M, JIANG H Y, CHEN X F, XU M D, LI Y, ZHAO J Y, CHEN D, ZHANG K, LI H, LIU H. Metabolomics and lipidomics analyses delineating Hfq deletion-induced metabolic alterations in Vibrio alginolyticus. Aquaculture, 2021, 535: 736349.
doi: 10.1016/j.aquaculture.2021.736349
|
[46] |
ZHANG W, GAO H L, HUANG Y M, WU S Q, TIAN J T, NIU Y N, ZOU C J, JIA C F, JIN M F, HUANG J, CHANG Z Y, YANG X X, JIANG D M. Glutamine synthetase gene glnA plays a vital role in curdlan biosynthesis of Agrobacterium sp. CGMCC 11546. International Journal of Biological Macromolecules, 2020, 165: 222-230.
doi: 10.1016/j.ijbiomac.2020.09.152
|
[47] |
WANG N, GAO J, YUAN L, JIN Y J, HE G Q. Metabolomics profiling during biofilm development of Bacillus licheniformis isolated from milk powder. International Journal of Food Microbiology, 2021, 337: 108939.
doi: 10.1016/j.ijfoodmicro.2020.108939
|
[48] |
ZHANG H, LIU J M, WEN R, CHEN Q, KONG B H. Metabolomics profiling reveals defense strategies of Pediococcus pentosaceus R1 isolated from Harbin dry sausages under oxidative stress. LWT, 2021, 135: 110041.
doi: 10.1016/j.lwt.2020.110041
|
[49] |
LI F, ZHU L Z. Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transmembrane transport. Chemosphere, 2014, 107: 58-64.
doi: 10.1016/j.chemosphere.2014.03.016
|
[50] |
WANG Y B, WANG F F, ZHANG X S, CEN C N, FU L L. Transcription factors FabR and FadR regulate cold adaptability and spoilage potential of Shewanella baltica. International Journal of Food Microbiology, 2020, 331: 108693.
doi: 10.1016/j.ijfoodmicro.2020.108693
|
[51] |
OREŠIČ M. Informatics and computational strategies for the study of lipids. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2011, 1811(11): 991-999.
doi: 10.1016/j.bbalip.2011.06.012
|
[52] |
GAUCHER F, RABAH H, KPONOUGLO K, BONNASSIE S, POTTIER S, DOLIVET A, MARCHAND P, JEANTET R, BLANC P, JAN G. Intracellular osmoprotectant concentrations determine Propionibacterium freudenreichii survival during drying. Applied Microbiology and Biotechnology, 2020, 104(7): 3145-3156.
doi: 10.1007/s00253-020-10425-1
|
[53] |
HAN J, MENG J, CHEN S Y, LI C. Integrative analysis of the gut microbiota and metabolome in rats treated with rice straw biochar by 16S rRNA gene sequencing and LC/MS-based metabolomics. Scientific Reports, 2019, 9: 17860.
doi: 10.1038/s41598-019-54467-6
pmid: 31780788
|
[54] |
CHEN H, FUJITA M, FENG Q H, CLARDY J, FINK G R. Tyrosol is a quorum-sensing molecule in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(14): 5048-5052.
|
[55] |
YU W C, CHEN Z, YE H, LIU P Z, LI Z P, WANG Y P, LI Q B, YAN S, ZHONG C J, HE N. Effect of glucose on poly-γ-glutamic acid metabolism in Bacillus licheniformis. Microbial Cell Factories, 2017, 16(1): 22.
doi: 10.1186/s12934-017-0642-8
|
[56] |
YU Y Y, YAN F, CHEN Y, JIN C, GUO J H, CHAI Y R. Poly-γ-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilis. Frontiers in Microbiology, 2016, 7: 1811.
|
[57] |
ZHAO X, CHEN L, WU J E, HE Y, YANG H S. Elucidating antimicrobial mechanism of nisin and grape seed extract against Listeria monocytogenes in broth and on shrimp through NMR-based metabolomics approach. International Journal of Food Microbiology, 2020, 319: 108494.
doi: 10.1016/j.ijfoodmicro.2019.108494
|
[58] |
刘苗苗. 基于转录组学和代谢组学解析柿单宁对食源性耐甲氧西林金黄色葡萄球菌的抑菌机理[D]. 杨凌: 西北农林科技大学, 2019.
|
|
LIU M M. Analysis of the antibacterial mechanism of persimmon tannin against food borne methicillin-resistant Staphylococcus aureus based on transcriptome and metabolomics[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
|
[59] |
SAYÉ M, MIRANDA M R, DI GIROLAMO F, DE LOS MILAGROS CÁMARA M, PEREIRA C A. Proline modulates the Trypanosoma cruzi resistance to reactive oxygen species and drugs through a novel D, L-proline transporter. PLoS ONE, 2014, 9(3): e92028.
doi: 10.1371/journal.pone.0092028
|