中国农业科学 ›› 2022, Vol. 55 ›› Issue (20): 4065-4074.doi: 10.3864/j.issn.0578-1752.2022.20.016

• 畜牧·兽医 • 上一篇    下一篇

氨基酸副产物对白高粱青贮饲料发酵品质及体外消化率的影响

努尔哈提·斯拉甫尔(),乌斯满·依米提()   

  1. 新疆大学生命科学与技术学院,乌鲁木齐 830046
  • 收稿日期:2021-01-07 接受日期:2022-08-30 出版日期:2022-10-16 发布日期:2022-10-24
  • 通讯作者: 乌斯满·依米提
  • 作者简介:努尔哈提·斯拉甫尔,Tel:15719980625;E-mail: 1143044185@qq.com
  • 基金资助:
    国家自然科学基金(31660014)

Effects of Amino Acid By-Products on Fermentation Quality and Digestibility of White Sorghum Silage

NUERHATI·Silafuer (),WUSIMAN·Yimiti ()   

  1. College of Life Science and Technology, Xinjiang University, Urumqi 830046
  • Received:2021-01-07 Accepted:2022-08-30 Online:2022-10-16 Published:2022-10-24
  • Contact: WUSIMAN·Yimiti

摘要:

【目的】 研究适量的氨基酸副产物(amino acid by-products,ABP)对白高粱发酵品质及其消化率的影响,为减轻环境污染及新型饲料添加剂的开发与利用研究提供思路。【方法】 研究中设无任何添加剂的对照组与添加ABP、ABP+饲用菌的2个试验组进行白高粱青贮发酵试验,通过测定饲料成分和体外消化率得出ABP对青贮饲料发酵品质及消化率的影响,并通过扫描电镜(SEM)观察探讨ABP对改善饲料发酵品质及提高消化率的机制。【结果】 研究表明2.0%的ABP添加到白高粱秸秆可降低饲料pH至3.65,与对照组(5.13)差异显著(P<0.05),感官评分属于优质青贮饲料区间。各试验组乳酸含量(ABP 组:11.95 g·kg-1,混合组:15.14 g·kg-1)极显著高于对照组(3.54 g·kg-1)(P<0.01)、乙酸与丁酸含量(乙酸:ABP组:2.87 g·kg-1、混合组:2.75 g·kg-1,丁酸:ABP组:0.72 g·kg-1、混合组:0.78 g·kg-1)显著低于对照组(乙酸:3.85 g·kg-1、丁酸:1.39 g·kg-1)(P<0.05),其中ABP+饲用菌的试验组乳酸含量比对照组高了327.85%;各组干物质(DM)含量变化不显著(P>0.05),中性洗涤纤维(NDF)(ABP组:58.67%,混合组:57.67%)、酸性洗涤木质素(ADL)(ABP组:4.77%,混合组:4.27%)和灰分(Ash)(ABP 组:1.56%,混合组:2.04%)低于对照组(NDF:63.66%、ADL:5.15%、Ash:2.76%),但差异不显著(P>0.05),酸性洗涤纤维(ADF)(ABP组:35.77%,混合组:28.63%)极显著低于对照组(40.58%)(P<0.01),粗蛋白含量(ABP组:9.65%,混合组:9.67%)极显著高于对照组(6.88%)(P<0.01);各试验组体外消化率 DM(ABP组:74.66%,混合组:80.03%)、NDF(ABP 组:72.74%,混合组:83.08%)和ADF(ABP组:68.29%,混合组:79.56%)均显著高于对照组(DM:60.67%、NDF:48.06%、ADF:44.81%)(P<0.05);结果表明ABP对青贮饲料发酵品质及消化率有明显的改善和提高作用。由SEM结果可知对照组横切面和表面结构完整、黏附的微生物数量少,而试验组表面结构蜡质层被破坏并黏附着大量的饲用菌、横切面细胞或组织内部黏附大量的饲用菌。以此初步得知ABP改善和提高青贮饲料发酵品质及消化率的机制是除饲用菌提供碳源和氮源外,饲料表面蜡质层被破坏从而促进饲用菌的黏附并降解细胞壁纤维素。【结论】 2.0%的ABP添加到白高粱青贮饲料中可显著提高发酵品质和消化率,对ABP的再利用、减轻环境污染及新型饲料添加剂的开发与利用有很大的经济和社会意义。

关键词: ABP, 青贮饲料, 发酵品质, 体外消化率, SEM显微镜

Abstract:

【Objective】 The aim of this study was to investigate the effects of appropriate amino acid by-products (ABP) on fermentation quality and digestibility of white sorghum, so as to provide ideas for reducing environmental pollution as well as developing and utilizing new feed additives.【Method】In the study, the control group without any additives and the two experimental groups with ABP and ABP+ forage bacteria were used to carry out the experiment of white sorghum silage fermentation. The effects of ABP on the fermentation quality and digestibility of silage were obtained by measuring the feed composition and in vitro digestibility, and scanning electron microscopy (SEM) was used to observe the mechanism of ABP on improving feed fermentation quality and digestibility.【Result】The study has shown that the addition of 2.0% ABP to white sorghum straw could reduce the pH of the feed to 3.65, which was significantly different from the control group (5.13) (P<0.05). The sensory score belonged to the quality silage interval. The lactic acid content of each experimental group (ABP:11.95 g·kg-1; MIX:15.14 g·kg-1) was significantly higher than that of the control group (3.54 g·kg-1) (P<0.01), the content of acetic acid and butyric acid (AA: ABP:2.87 g·kg-1, MIX:2.75 g·kg-1; BA: ABP:0.72 g·kg-1, MIX:0.78 g·kg-1) was significantly lower than that of the control group (acetic acid:3.85 g·kg-1; butyric acid: 1.39 g·kg-1) (P<0.05), and the lactic acid content of the experimental group of ABP+ forage bacteria was 327.85% higher than that of the control group; the content of dry matter (DM) in each group did not change significantly (P>0.05). Neutral detergent fiber (NDF) (ABP:58.67%; MIX:57.67%), acid detergent lignin (ADL)(ABP:4.77%; MIX:4.27%) and ash (Ash) (ABP : 1.56%; mixed: 2.04%) lower than the control group (NDF:63.66%; ADL:5.15%; Ash:2.76%), but the difference was not significant (P>0.05), the acid detergent fiber (ADF) (ABP:35.77%; MIX:28.63%) was significantly lower than that of the control group (40.58%) (P<0.01), and the crude protein content (ABP: 9.65%, MIX:9.67%) was significantly higher than the control group (6.88%) (P<0.01); the in vitro digestibility of each experimental group was DM (ABP: 74.66%; MIX: 80.03%), NDF (ABP: 72.74%; MIX: 83.08%) and ADF (ABP: 68.29%; MIX: 79.56%), which were significantly higher than the control group (DM: 60.67%, NDF: 48.06%; ADF: 44.81%) (P<0.05); the results showed that ABP significantly improved and increased the fermentation quality and digestibility of silage. From the SEM results, it was found that the cross-section and surface structure of the control group were small, and the number of adhering microorganisms was small too, while the wax layer of the surface structure of the treatment group was destroyed and adhered to a large number of forage bacteria, cross-section cells or a large amount of forage bacteria adhered inside the tissue. Therefore, it was preliminarily informed that ABP improved and increased the fermentation quality and digestibility of silage. In addition, the carbon and nitrogen sources provided by the feed bacteria, the wax layer on the surface of the feed was destroyed to promote the adhesion of the feed bacteria and degrade the cell wall cellulose.【Conclusion】2.0% ABP added to white sorghum silage could significantly improve the fermentation quality and digestibility, and had great economic and social significance for the reuse of ABP, the reduction of environmental pollution, and the development and utilization of new feed additives.

Key words: ABP, silage, fermentation quality, in vitro digestibility, SEM