中国农业科学 ›› 2021, Vol. 54 ›› Issue (16): 3461-3472.doi: 10.3864/j.issn.0578-1752.2021.16.009

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

锌与尿素结合对锌有效性及尿素转化的影响

赵丽芳(),袁亮,张水勤,赵秉强,林治安,李燕婷()   

  1. 中国农业科学院农业资源与农业区划研究所/农业农村部植物营养与肥料重点实验室,北京 100081
  • 收稿日期:2020-09-27 接受日期:2020-11-25 出版日期:2021-08-16 发布日期:2021-08-24
  • 通讯作者: 李燕婷
  • 作者简介:赵丽芳,E-mail: zhaolif@163.com
  • 基金资助:
    “十三五”国家重点研发计划(2016YFD0200403)

Effects of Zinc Combined with Urea on Zinc Availability and Urea Conversion

ZHAO LiFang(),YUAN Liang,ZHANG ShuiQin,ZHAO BingQiang,LIN ZhiAn,LI YanTing()   

  1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081
  • Received:2020-09-27 Accepted:2020-11-25 Online:2021-08-16 Published:2021-08-24
  • Contact: YanTing LI

摘要:

【目的】通过研究锌与尿素以不同方式结合施用对土壤中锌有效性及尿素在土壤中转化的影响,探究氮锌相互作用机制,为锌与尿素科学配伍及养分高效利用提供科学依据。【方法】将七水硫酸锌按0.5%和5%的重量份与尿素分别进行物理掺混(U+Zn)和熔融混合(UZn),制备含锌尿素试验产品:U+Zn0.5、U+Zn5、UZn0.5和UZn5。采用土壤培养试验,研究锌与尿素以不同方式结合施用对土壤有效锌含量、土壤酰胺态氮含量、土壤NO3-N和NH4+-N含量及土壤脲酶活性的影响,并结合X射线光电子能谱和核磁共振波谱分析锌与尿素不同结合方式对锌有效性和尿素转化的影响机制。试验设置8个处理:①CK(对照),不施任何肥料;②U,施用普通尿素;③Zn0.5,单施ZnSO4·7H2O;④Zn5,单施ZnSO4·7H2O;⑤U+Zn0.5,施用含锌尿素U+Zn0.5;⑥U+Zn5,施用含锌尿素U+Zn5;⑦UZn0.5,施用含锌尿素UZn0.5;⑧UZn5,施用含锌尿素UZn5。其中,处理②、⑤、⑥、⑦和⑧的氮用量相同,处理③、⑤和⑦的锌用量相同,处理④同⑥和⑧的锌用量。【结果】(1)与单施锌肥相比,锌与尿素以物理掺混和熔融混合方式结合后施用均可提高土壤有效锌含量,且熔融混合方式对锌有效性的提高效果强于物理掺混。在0.5%水平下,锌与尿素混合施用较锌肥单施土壤有效锌含量平均提高17.3%,而熔融混合较物理掺混平均提高了10.9%;在5%水平下,锌与尿素混合施用较锌肥单施土壤有效锌含量平均提高13.1%,熔融混合较物理掺混则平均提高了12.7%;在熔融混合方式下,0.5%用量(UZn0.5)的锌固定率较5%用量(UZn5)的降低了23.93个百分点。(2)与普通尿素(U)相比,4种含锌尿素均可减缓尿素水解,其中锌与尿素熔融结合较物理掺混结合更有利于延缓尿素水解,且以0.5%的用量时二者差异达到显著水平(P<0.05)。(3)锌与尿素结合可在培养后期提高土壤NH4+-N含量,以UZn0.5提高幅度最明显。与普通尿素(U)相比,U+Zn5、UZn0.5和UZn5处理在培养后期可显著提高土壤NO3--N含量,且UZn0.5处理提高幅度显著高于UZn5处理。(4)锌与尿素熔融混合在培养后期可提高土壤矿质态氮含量,与U处理相比,UZn0.5和UZn5处理土壤矿质态氮含量分别提高了7.6%和1.9%,且UZn0.5较UZn5处理土壤矿质态氮含量仍高出5.6%,差异达显著水平(P<0.05)。(5)锌与尿素结合在培养前期可抑制土壤脲酶活性,熔融混合较物理掺混抑制效果更强;锌与尿素熔融混合可在培养后期提高土壤脲酶活性,UZn0.5处理提高土壤脲酶活性的程度高于UZn5处理。【结论】锌与尿素结合(物理掺混、熔融混合)均可减少土壤对锌的固定,提高土壤有效锌含量,以氮锌熔融混合效果更好。锌与尿素结合能够延缓尿素水解,在培养后期提高土壤NH4+-N、NO3-N和矿质态氮含量,以熔融混合方式和锌添加量以0.5%效果较好。0.5%添加量的七水硫酸锌与尿素熔融混合制成含锌尿素产品,在生产中具有推广前景。

关键词: 含锌尿素, 物理掺混, 熔融混合, 锌有效性, 尿素转化

Abstract:

【Objective】The interaction mechanism of nitrogen and zinc was explored by investigating the effects of zinc combined with urea in different ways on the zinc availability and the urea conversion in soil, so as to provide a scientific basis for the scientific compatibility of zinc and urea and the high-efficiency utilization of nutrients.【Method】0.5 and 5 parts by weight of zinc sulfate heptahydrate were combined with 99.5 and 95 parts by weight of urea by the physical mixing process (U+Zn) and the melt mixing process (UZn), respectively, to prepare zinc-containing urea test products: U+Zn0.5, U+Zn5, UZn0.5 and UZn5. The soil culture experiment was conducted to study the effects of zinc combined with urea in different ways on soil available zinc content, soil amide nitrogen content, soil NO3-N and NH4+-N content, and soil urease activity. Subsequently, the inherent mechanism was revealed by combining the structure of zinc-containing urea investigated by X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy. There were eight treatments arranged: ①CK (control), without any fertilizer; ②U, applied with common urea; ③Zn0.5, applied with ZnSO4·7H2O; ④Zn5, applied with ZnSO4·7H2O; ⑤U+Zn0.5, applied with zinc-containing urea U+Zn0.5; ⑥U+Zn5, applied with zinc-containing urea U+Zn5; ⑦UZn0.5, applied with zinc-containing urea UZn0.5; ⑧UZn5, applied with zinc-containing urea UZn5. Wherein, the same amount of nitrogen was applied for the treatments of ②, ⑤, ⑥, ⑦ and ⑧, the same amount of zinc for treatments of ③, ⑤ and ⑦, and the amount of zinc for treatments of ④, ⑥ and ⑧.【Result】(1) Compared with single application of zinc fertilizer, zinc combined with urea increased the available zinc content of the soil, and the zinc-containing urea prepared by the melt mixing process had a better performance than that prepared by physical mixing process. At the 0.5% level, zinc combined with urea increased the available zinc content by 17.3% on average compared with zinc fertilizer applied alone, and the available zinc content under UZn0.5 treatment was higher than that under U+Zn0.5 treatment by 10.9%. At the 5% level, zinc combined with urea increased the available zinc content by 13.1% on average compared with zinc fertilizer applied alone, and the available zinc content under UZn5 treatment was higher than that under U+Zn5 treatment by 12.7%. The fixation rate of zinc under UZn0.5 treatment was lower than that under UZn5 treatment by 23.93 percentage points. (2) Compared with common urea, all of the zinc-containing urea slowed down the hydrolysis of urea. Among them, the zinc-containing urea prepared by the melt process showed a slower hydrolysis of urea than that prepared by the physically mixing. The difference was significant between the treatment of UZn0.5 and U+Zn0.5 (P<0.05). (3) The combination of zinc and urea increased soil NH4+-N content at the later stage of cultivation, and the most significant increase happened under UZn0.5 treatment. Compared with common urea, U+Zn5, UZn0.5 and UZn5 significantly increased the soil NO3-N content at the later stage of cultivation, and the increase rate under UZn0.5 treatment was significantly higher than that under UZn5 treatment. (4) Zinc-containing urea prepared by the melt mixing process could increase the soil mineral nitrogen content at the later stage of cultivation. Compared with U, the soil mineral nitrogen content under the treatment of UZn0.5 and UZn5 was increased by 7.6% and 1.9%, respectively. The soil mineral nitrogen content under UZn0.5 treatment was significantly higher than that under UZn5 by 5.6% (P<0.05). (5) Combination of zinc and urea could inhibit soil urease activity at the early stage of cultivation, and the zinc-containing urea prepared by the melt mixing process showed a stronger inhibitory effect than that prepared by the physically mixing. The zinc-containing urea prepared by the melt mixing process showed a higher soil urease activity at the later stage of cultivation, and there was a better performance under UZn0.5 treatment than that under UZn5 treatment.【Conclusion】The combination of zinc and urea could reduce the zinc fixation and increase the zinc availability in soil. The effect of zinc combined with urea by the melt process was better than that by the physically mixing. Meanwhile, the combination of zinc and urea could delay the hydrolysis of urea, and increase the mineral nitrogen content at the later stage of cultivation. 0.5% of zinc sulfate heptahydrate combined with urea by the melt process showed the best performance. Therefore, there would a popular prospect for the prepared by 0.5% of zinc sulfate heptahydrate combined with urea by the melt process.

Key words: zinc-containing urea, physical mixing, melt mixing, zinc availability, urea conversion