中国农业科学 ›› 2020, Vol. 53 ›› Issue (12): 2385-2398.doi: 10.3864/j.issn.0578-1752.2020.12.007

• 植物保护 • 上一篇    下一篇

喷嘴类型对植保无人飞机喷雾性能的影响

贡常委1,马钰1,杨锐1,阮彦伟1,王学贵1(),刘越2   

  1. 1 四川农业大学农学院/无公害农药研究实验室/国家级作物学教学实验示范中心,成都 611130;
    2 安阳全丰生物科技有限公司/农业农村部 航空植保重点实验室,河南安阳 455000
  • 收稿日期:2019-11-22 出版日期:2020-06-16 发布日期:2020-06-25
  • 通讯作者: 王学贵
  • 作者简介:贡常委,Tel:028-86290977;E-mail:youguqiu@163.com。
  • 基金资助:
    国家重点研发计划(2018YFD0200300)

Effect of Nozzle Type on the Spray Performance of Plant Protection Unmanned Aerial Vehicle (UAV)

GONG ChangWei1,MA Yu1,YANG Rui1,RUAN YanWei1,WANG XueGui1(),LIU Yue2   

  1. 1 College of Agriculture, Sichuan Agricultural University/Biorational Pesticide Research Laboratory/National Demonstration Center for Experimental Crop Science Education, Chengdu 611130;
    2 Anyang Quanfeng Biotechnology Co. Ltd./Key Laboratory of Aviation Plant Protection, Ministry of Agriculture and Rural Affairs, Anyang 455000, Henan
  • Received:2019-11-22 Online:2020-06-16 Published:2020-06-25
  • Contact: XueGui WANG

摘要:

【目的】植保无人飞机具有喷雾效率高、适用性好、作物损伤小和操控人员安全系数高等特点,但飘移严重制约着其推广应用,喷嘴作为核心组件,是影响雾滴飘移的关键因素。本文旨在明确不同类型喷嘴对植保无人飞机喷雾的雾化性能及雾滴飘移的影响,为选择合适喷嘴提供理论依据。【方法】筛选20种常见的扇形、气吸型和圆锥形喷嘴,采用激光粒度仪系统测定并计算喷嘴的分布跨度、体积中径(D50)及尺寸<150 μm的雾滴占全部雾粒体积的百分比(ΦVol<150 μm)等表征雾化性能的参数,在开放式风洞中首先测定不同喷嘴在0.3 MPa下的流量,然后采用相片纸法和麦拉片法评价喷嘴型号对喷雾飘移和飘移沉积雾滴粒径特征的影响。【结果】在0.3 MPa喷雾压力下测定不同喷嘴雾化性能表明,在常规扇形喷嘴中,F110-01、F110-015、F110-02和F110-03随着型号的增加,分布跨度和D50显著增加,而ΦVol<150 μm显著减低,气吸型扇形喷嘴AFC-01—AFC-05和圆锥形喷嘴HCC80-0075—HCC80-025具有相同的规律,但相同型号的气吸型扇形喷嘴,ΦVol<150 μm均显著小于扇形喷嘴和圆锥形喷嘴,而分布跨度和D50均大于扇形喷嘴和圆锥形喷嘴;在气吸型扇形喷嘴中,AFC-01及IDK120-015分布跨度和D50显著小于其他类型;IDK120-015 ΦVol<150 μm极显著低于HCC80-02、F110-015和F110-03,分布跨度和D50显著高于HCC80-02和F110-015,HCC80-02的流量分别与IDK120-015、F110-015之间差异不显著,均显著低于F110-03。进一步采用麦拉片和相片纸法评价地面飘移沉积雾滴粒径特征和飘移量,喷嘴类型和飘移距离对飘移沉积雾滴D50和分布跨度的影响均达到极显著,飘移距离3 m的D50和分布跨度均显著低于1 m和2 m的,Depositscan软件计算预估飘移量的趋势和实测飘移量一致,均为HCC80-02>F110-015>F110-03>IDK120-015。计算不同喷嘴防飘移效果可知,IDK120-015的防飘移效果最好,达72.02%,F110-03次之,HCC80-02最差。【结论】麦拉片和相片纸均可收集地面飘移量作为评估雾滴飘移的方法;合理选择喷嘴可降低小雾滴的百分比和扩大相对雾滴粒径,显著减少植保无人飞机施药作业过程中的雾滴飘移。

关键词: 植保无人飞机, 雾化性能, 分布跨度, 体积中径, 喷嘴, 地面飘移沉积量

Abstract:

【Objective】 Plant protection unmanned aerial vehicle (UAV) has the characteristics of high spray efficiency, good applicability, small crop damage and high safety to the operator. However, drift seriously restricts its popularization and application. As the core component, the nozzle is a key factor affecting droplet drift. The objective of this study is to clarify the atomization performance of different types of nozzles and their effect on spray drift, and to provide theoretical basis for selecting suitable nozzles. 【Method】 In this paper, 20 kinds of common fan-shaped, air suction and conical nozzles were selected, and the distribution span, volume diameter (D50) and percentage of the total volume of fog particles smaller than 150 μm (ΦVol<150 μm) of different types of nozzles were detected by laser particle size analyzer. In an open wind tunnel, the flow rate of different nozzles at 0.3 MPa was firstly measured, then the influence of different types of nozzles on spray drift and particle size characteristics of deposition droplet was evaluated by photo paper and mylar card method. 【Result】 The atomization performance of different nozzles was measured under 0.3 MPa spray pressure. It showed that in common fan-shaped nozzle such as F110-01, F110-015, F110-02 and F110-03, the distribution span and D50 increased significantly with the increase of the model, while ΦVol<150 μm decreased significantly. The air fan nozzle from AFC-01 to AFC-05 and the conical nozzle from HCC80-0075 to HCC80-025 had the same rule. The ΦVol<150 μm of air fan nozzle with the same aperture was smaller than that of fan-shaped nozzle and conical nozzle, while the distribution span and D50 were larger than those of fan-shaped nozzle and conical nozzle. The distribution span and D50 of AFC-01 and IDK120-015 were significantly smaller than those of other types of air fan nozzle. The ΦVol<150 μm of IDK120-015 was significantly lower than that of HCC80-02, F110-015 and F110-03, while the distribution span and D50 were significantly higher than those of HCC80-02 and F110-015. There was no significant difference between the flow of HCC80-02 and IDK120-015, F110-015, which were all significantly lower than that of F110-03. Furthermore, the particle size characteristics and drift amount of drift deposition droplets on the ground were evaluated by using mylar card and photo paper. The effects of nozzle type and drift distance on the D50 and distribution span of drift deposition droplets were extremely significant. The D50 and distribution span of drift distance 3 m were significantly lower than those of 1 m and 2 m. The trend of predicted drift amount calculated by Depositscan software was consistent with the measured drift amount, both of which were HCC80-02>F110-015>F110-03>IDK120-015. After the calculation of anti-drift effect of different nozzles, IDK120-015 had the best anti-drift effect (72.02%), F110-03 was the second, and HCC80-02 was the worst. 【Conclusion】 It is a feasible method to evaluate the drift of droplets through mylar card and photo paper to collect the ground drift. The reasonable selection of nozzle can significantly reduce the percentage of small droplets and expand the relative droplet size, and result in the decreased droplets drift during the operation of UAV.

Key words: plant protection unmanned aerial vehicle (UAV), atomization performance, distribution span, volume diameter (D50), nozzle, surface drift deposition