中国农业科学 ›› 2014, Vol. 47 ›› Issue (17): 3392-3404.doi: 10.3864/j.issn.0578-1752.2014.17.007
詹家绥1;2;吴娥娇1;2;刘西莉3;陈凤平1;2
收稿日期:
2014-03-03
出版日期:
2014-09-01
发布日期:
2014-04-25
作者简介:
詹家绥,Tel:0591-83856973;E-mail:jiasui.zhan@fafu.edu.cn
基金资助:
ZHAN Jia-sui;WU E-jiao; LIU Xi-li; CHEN Feng-ping;
Received:
2014-03-03
Online:
2014-09-01
Published:
2014-04-25
摘要: 单位点杀菌剂是植物病害管理的重要组成部分,随着单位点杀菌剂的大量、广泛使用,抗性问题也随之产生。目前为止,有植物病原菌对各大类单位点杀菌剂均具抗性的报道。本文作者主要阐述了生产中常用的5类单位点杀菌剂,包括苯并咪唑类杀菌剂(MBCs)、二甲酰亚胺类杀菌剂(DCFs)、14α-脱甲基酶抑制剂(DMIs)、QoIs和琥珀酸脱氢酶抑制剂(SDHIs)的作用机理及抗性分子机制的研究进展,并进一步论述了抗药性产生的机理及抗性治理原则。MBCs作用于β-微管蛋白,抗性主要与靶标蛋白基因的点突变有关,突变造成的氨基酸变化多集中于第50、167、198、200和240等5个位置,主要突变位点为第198位,同一菌株通常只发生一个氨基酸变异,不同位点的点突变甚至同一位点的不同氨基酸替代均会引起抗性水平的差异;DCFs的作用靶标尚不清楚,病原真菌对其抗性可能与双元组氨酸激酶OS基因的点突变有关;DMIs通过抑制14α-脱甲基酶最终影响麦角甾醇的合成,抗性主要与Cyp51的点突变或过量表达或运输体的过量表达相关,Cyp51点突变是抗DMI的主要机制,同一突变对不同的三唑类杀菌剂敏感性表现不尽相同,不同位置的点突变在同一病原菌中对不同三唑类杀菌剂的敏感性影响也不同。点突变数量在不同的真菌中表现不同,有单个发生,也有多个同时发生,且对抗药性具有积累效应;QoIs作用于电子传递链的复合物III,抗性主要与Cytb的点突变有关,与抗性相关的点突变主要发生在Cytb的120—155和255—280两个编码区,其中G143A和F129L为最主要的点突变;SDHIs作用于电子传递链的复合物II,抗性主要与SdhB、SdhC或SdhD的点突变有关,大部分病原真菌对SDHIs的抗性与SdhB点突变有关,SdhB点突变发生位置比较单一,在多种病原菌中突变均发生在相同的组氨酸上即H272, 而SdhC和SdhD突变位点比较多。
詹家绥1;2;吴娥娇1;2;刘西莉3;陈凤平1;2. 植物病原真菌对几类重要单位点杀菌剂的抗药性分子机制[J]. 中国农业科学, 2014, 47(17): 3392-3404.
ZHAN Jia-sui;WU E-jiao; LIU Xi-li; CHEN Feng-ping;. Molecular Basis of Resistance of Phytopathogenic Fungi to Several Site-Specific Fungicides[J]. Scientia Agricultura Sinica, 2014, 47(17): 3392-3404.
[1]张传清, 周明国, 邵振润, 梁桂梅. 稻瘟病菌对异稻瘟净、多菌灵和三环唑的敏感性检测及抗药性变异研究. 中国水稻科学, 2004, 18(5): 455-460. Zhang C Q, Zhou M G, Shao Z R, Liang G M. Sensitivity detection and resistance variation of Magnaporthe grisea to kitazin P, carbendazim and tricyclazole. Chinese Journal of Rice Science, 2004, 18(5): 455-460. (in Chinese) [2]严红, 燕继晔, 王忠跃, 李亚宁, 金桂华, 李兴红. 葡萄灰霉病菌对3种杀菌剂的多重抗药性检测. 果树学报, 2012, 29(4): 625-629. Yan H, Yan J Y, Wang Z Y, Li Y N, Jin G H, Li X H. Multiple fungicide resistance of Botrytis cinerea from grapevine to three fungicides. Journal of Fruit Science, 2012, 29(4): 625-629. (in Chinese) [3]邵振润, 周明国, 仇剑波, 杨荣明, 刁亚梅, 张帅. 2010年小麦赤霉病发生与抗性调查研究及防控对策. 农药, 2011, 50(5): 385-389. Shao Z R, Zhou M G, Qiu J B, Yang R M, Diao Y M, Zhang S. The occurrence, resistance to carbendazim of wheat scab and its control measures in Jiangsu province in 2010. Agrochemicals, 2011, 50(5): 385-389. (in Chinese) [4]李兴红, 乔广行, 黄金宝, 林雪, 刘建华. 北京地区番茄灰霉病菌对嘧霉胺的抗药性检测. 植物保护, 2012, 38(4): 141-143. Li X H, Qiao G X, Huang J B, Lin X, Liu J H. Detection of the resistance of Botrytis cinerea to pyrimethanil from tomato in Beijing. Plant Protection, 2012, 38(4): 141-143. (in Chinese) [5]郭一丹, 李强, 王保通, 付晓丽, 王芳. 陕西省小麦白粉菌对三唑酮的抗药性监测. 麦类作物学报, 2012, 32(2): 370-373. Guo Y D, Li Q, Wang B T, Fu X L, Wang F. Monitoring of the resistance of Blumeria graminis f. sp. tritici isolates to tridimefon in Shaanxi province. Journal of Triticeae Crops, 2012, 32(2): 370-373. (in Chinese) [6]Howard R J, Aist J R. Effects of MBC on hyphal tip organization, growth, and mitosis of Fusarium acuminatum, and their antagonism by D2O. Protoplasma, 1977, 92(3/4): 195-210. [7]Howard R J, Aist J R. Cytoplasmic microtubules and fungal morphogenesis: ultrastructural effects of methyl benzimidazole-2- ylcarbamate determined by freeze-substitution of hyphal tip cells. The Journal of Cell Biology, 1980, 87(1): 55-64. [8]Ma Z H, Luo Y, Michailides T J. Resistance of Botryosphaeria dothidea from pistachio to iprodione. Plant Disease, 2001, 85(2): 183-188. [9]Yamaguchi I, Fujimura M. Recent topics on action mechanisms of fungicides. Journal of Pesticide Science, 2005, 30(2): 67-74. [10]Siegel M R. Sterol-inhibiting fungicides-effects on sterol biosynthesis and sites of action. Plant Disease, 1981, 65(12): 986-989. [11]Bartlett D W, Clough J M, Godwin J R, Hall A A, Hamer M, Parr- Dobrzanski B. The strobilurin fungicides. Pest Management Science, 2002, 58(7): 649-662. [12]Fernandez-Ortuno D, Tores J A, De Vicente A, Perez-Garcia A. Mechanisms of resistance to Qol fungicides in phytopathogenic fungi. International Microbiology, 2008, 11(1):1-9. [13]Hägerhäll C. Succinate: quinone oxidoreductases: Variations on a conserved theme. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1997, 1320(2): 107-141. [14]Ackrell B A C. Progress in understanding structure-function relationships in respiratory chain complex II. FEBS Letters, 2000, 466(1): 1-5. [15]Sun F, Huo X, Zhai Y J, Wang A J, Xu J X, Su D, Bartlam M, Rao Z H. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell, 2005, 121(7): 1043-1057. [16]Horsefield R, Yankovskaya V, Sexton G, Whittingham W, Shiomi K, Omura S, Byrne B, Cecchini G, Iwata S. Structural and computational analysis of the quinone-binding site of complex II (succinate- ubiquinone oxidoreductase): A mechanism of electron transfer and proton conduction during ubiquinone reduction. The Journal of Biological Chemistry, 2006, 281(11): 7309-7316. [17]Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science, 2003, 299(5607): 700-704. [18]Huang L S, Sun G, Cobessi D, Wang A C, Shen J T, Tung E Y, Anderson V E, Berry E A. 3-Nitropropionic acid is a suicide inhibitor of mitochondrial respiration that, upon oxidation by Complex II, forms a covalent adduct with a catalytic base arginine in the active site of the enzyme. The Journal of Biological Chemistry, 2006, 281(9): 5965-5972. [19]Koenraadt H, Somerville S C, Jones A L. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology, 1992, 82(11): 1348-1354. [20]Albertini C, Gredt M, Leroux P. Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pesticide Biochemistry and Physiology, 1999, 64(1): 17-31. [21]Chen F, Liu X, Schnabel G. Field strains of Monilinia fructicola resistant to both MBC and DMI fungicides isolated from stone fruit orchards in the eastern United States. Plant Disease, 2013, 97(8): 1063-1068. [22]Banno S, Fukumori F, Ichiishi A, Okada K, Uekusa H, Kimura M, Fujimura M. Genotyping of benzimidazole-resistant and dicarboximide- resistant mutations in Botrytis cinerea using real-time polymerase chain reaction assays. Phytopathology, 2008, 98(4): 397-404. [23]Chen C J, Yu J J, Bi C W, Zhang Y N, Xu J Q, Wang J X, Zhou M G. Mutations in a β-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides. Phytopathology, 2009, 99(12): 1403-1411. [24]Qiu J B, Xu J Q, Yu J J, Bi C W, Chen C J, Zhou M G. Localisation of the benzimidazole fungicide binding site of Gibberella zeae β2-tubulin studied by site-directed mutagenesis. Pest Management Science, 2011, 67(2): 191-198. [25]Ma Z H, Michailides T J. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 2005, 24(10): 853-863. [26]Trkulja N, Ivanovic Z, Pfaf-Dolovac E, Dolovac N, Mitrovic M, Tosevski I, Jovic J. Characterisation of benzimidazole resistance of Cercospora beticola in Serbia using PCR-based detection of resistance-associated mutations of the β-tubulin gene. European Journal of Plant Pathology, 2013, 135(4): 889-902. [27]Davidson R M, Hanson L E, Franc G D, Panella L. Analysis of β-tubulin gene fragments from benzimidazole-sensitive and -tolerant Cercospora beticola. Journal of Phytopathology, 2006, 154(6): 321-328. [28]Imazaki I, Ishikawa K, Yasuda N, Miyasaka A, Kawasaki S, Koizumi S. Incidence of thiophanate-methyl resistance in Cercospora kikuchii within a single lineage based on amplified fragment length polymorphisms in Japan. Journal of General Plant Pathology, 2006, 72(2): 77-84. [29]Kongtragoul P, Nalumpang S, Miyamoto Y, Izumi Y, Akimitsu K. Mutation at codon 198 of Tub2 gene for carbendazim resistance in Colletotrichum gloeosporioides causing mango anthracnose in Thailand. Journal of Plant Protection Research, 2011, 51(4): 377-384. [30]Chung W H, Chung W C, Peng M T, Yang H R, Huang J W. Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP. New Biotechnology, 2010, 27(1): 17-24. [31]Malandrakis A A, Markoglou A N, Ziogas B N. PCR-RFLP detection of the E198A mutation conferring resistance to benzimidazoles in field isolates of Monilinia laxa from Greece. Crop Protection, 2012, 39: 11-17. [32]Yin Y, Liu X, Shi Z, Ma Z. A multiplex allele-specific PCR method for the detection of carbendazim-resistant Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 2010, 97(1): 36-42. [33]Ziogas B N, Nikou D, Markoglou A N, Malandrakis A A, Vontas J. Identification of a novel point mutation in the β-tubulin gene of Botrytis cinerea and detection of benzimidazole resistance by a diagnostic PCR-RFLP assay. European Journal of Plant Pathology, 2009, 125(1): 97-107. [34]Martin L, Teresa Martin M. Characterization of fungicide resistant isolates of Phaeoacremonium aleophilum infecting grapevines in Spain. Crop Protection, 2013, 52: 141-150. [35]Shi H, Wu H, Zhang C, Shen X. Monitoring and characterization of resistance development of strawberry Phomopsis leaf blight to fungicides. European Journal of Plant Pathology, 2013, 135(4): 655-660. [36]Schmidt L S, Ghosoph J M, Margosan D A, Smilanick J L. Mutation at β-tubulin codon 200 indicated thiabendazole resistance in Penicillium digitatum collected from California citrus packinghouses. Plant Disease, 2006, 90(6): 765-770. [37]Quello K L, Chapman K S, Beckerman J L. In situ detection of benzimidazole resistance in field isolates of Venturia inaequalis in Indiana. Plant Disease, 2010, 94(6): 744-750. [38]Oshima M, Fujimura M, Banno S, Hashimoto C, Motoyama T, Ichiishi A, Yamaguchi I. A point mutation in the two-component histidine kinase BcOS-1 gene confers dicarboximide resistance in field isolates of Botrytis cinerea. Phytopathology, 2002, 92(1): 75-80. [39]Oshima M, Banno S, Okada K, Takeuchi T, Kimura M, Ichiishi A, Yamaguchi I, Fujimura M. Survey of mutations of a histidine kinase gene Bc0S1 in dicarboximide-resistant field isolates of Botrytis cinerea. Journal of General Plant Pathology, 2006, 72(1): 65-73. [40]Dry I B, Yuan K H, Hutton D G. Dicarboximide resistance in field isolates of Alternaria alternata is mediated by a mutation in a two-component histidine kinase gene. Fungal Genetics and Biology, 2004, 41(1): 102-108. [41]Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Pest Management Science, 2001, 57(5): 437-442. [42]Luo Y Y, Yang J K, Zhu M L, Liu C J, Li H Y, Lu Z B, Pan W Z, Zhang Z H, Bi W, Zhang K Q. The group III two-component histidine kinase Alhk1 is involved in fungicides resistance, osmosensitivity, spore production and impacts negatively pathogenicity in Alternaria longipes. Current Microbiology, 2012, 64(5): 449-456. [43]Yang Q, Yan L, Gu Q, Ma Z. The mitogen-activated protein kinase kinase kinase BcOs4 is required for vegetative differentiation and pathogenicity in Botrytis cinerea. Applied Microbiology and Biotechnology, 2012, 96(2): 481-492. [44]Becher R, Weihmann F, Deising H B, Wirsel S G R. Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC Genomics, 2011, 12: 52. [45]Mellado E, Diaz-Guerra T M, Cuenca-Estrella M, Rodriguez-Tudela J L. Identification of two different 14-α sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillus fumigatus and other Aspergillus species. Journal of Clinical Microbiology, 2001, 39(7): 2431-2438. [46]Liu X, Jiang J, Shao J, Yin Y, Ma Z. Gene transcription profiling of Fusarium graminearum treated with an azole fungicide tebuconazole. Applied Microbiology and Biotechnology, 2010, 85(4): 1105-1114. [47]Cools H J, Parker J E, Kelly D E, Lucas J A, Fraaije B A, Kelly S L. Heterologous expression of mutated eburicol 14 α-demethylase (CYP51) proteins of Mycosphaerella graminicola to assess effects on azole fungicide sensitivity and intrinsic protein function. Applied and Environmental Microbiology, 2010, 76(9): 2866-2872. [48]Lamb D C, Kelly D E, Schunck W H, Shyadehi A Z, Akhtar M, Lowe D J, Baldwin B C, Kelly S L. The mutation T315A in Candida albicans sterol 14 α-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. The Journal of Biological Chemistry, 1997, 272(9): 5682-5688. [49]Warrilow A G S, Martel C M, Parker J E, Melo N, Lamb D C, Nes W D, Kelly D E, Kelly S L. Azole binding properties of Candida albicans sterol 14-α demethylase (CaCYP51). Antimicrobial Agents and Chemotherapy, 2010, 54(10): 4235-4245. [50]Keon J P R, White G A, Hargreaves J A. Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Current Genetics, 1991, 19(6): 475-481. [51]Fan J, Chen F, Diao Y, Cools H, Kelly S, Liu X. The Y123H substitution perturbs FvCYP51B function and confers prochloraz resistance in laboratory mutants of Fusarium verticillioides. Plant Pathology, 2013, doi: 10.1111/ppa.12168. [52]Leroux P, Walker A S. Multiple mechanisms account for resistance to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella graminicola. Pest Management Science, 2011, 67(1): 44-59. [53]Garcia-Effron G, Mellado E, Gomez-Lopez A, Alcazar-Fuoli L, Cuenca-Estrella A, Rodriguez-Tudela J L. Differences in interactions between azole drugs related to modifications in the 14-α sterol dernethylase gene (cyp51A) of Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2005, 49(5): 2119-2121. [54]Hu W, Sillaots S, Lemieux S, Davison J, Kauffman S, Breton A, Linteau A, Xin C, Bowman J, Becker J, Jiang B, Roemer T. Essential gene identification and drug target prioritization in Aspergillus fumigatus. Plos Pathogens, 2007, 3(3): e24. [55]Rodriguez-Tudela J L, Alcazar-Fuoli L, Mellado E, Alastruey- Izquierdo A, Monzon A, Cuenca-Estrella M. Epidemiological cutoffs and cross-resistance to azole drugs in Aspergillus fumigatus. Antimicrob Agents and Chemotherapy, 2008, 52(7): 2468-2472. [56]Hamamoto H, Hasegawa K, Nakaune R, Lee Y J, Makizumi Y, Akutsu K, Hibi T. Tandem repeat of a transcriptional enhancer upstream of the sterol 14α-demethylase gene (CYP51) in Penicillium digitatum. Applied and Environmental Microbiology, 2000, 66(8): 3421-3426. [57]Ghosoph J M, Schmidt L S, Margosan D A, Smilanick J L. Imazalil resistance linked to a unique insertion sequence in the PdCYP51 promoter region of Penicillium digitatum. Postharvest Biology and Technology, 2007, 44(1): 9-18. [58]Sun X, Wang J, Feng D, Ma Z, Li H. PdCYP51B, a new putative sterol 14α-demethylase gene of Penicillium digitatum involved in resistance to imazalil and other fungicides inhibiting ergosterol synthesis. Applied Microbiology and Biotechnology, 2011, 91(4): 1107-1119. [59]Luo C X, Schnabel G. The cytochrome P450 lanosterol 14α- demethylase gene is a demethylation inhibitor fungicide resistance determinant in Monilinia fructicola field isolates from Georgia. Applied and Environmental Microbiology, 2008, 74(2): 359-366. [60]Ma Z H, Proffer T J, Jacobs J L, Sundin G W. Overexpression of the 14α-demethylase target gene (CYP51) mediates fungicide resistance in Blumeriella jaapii. Applied and Environmental Microbiology, 2006, 72(4): 2581-2585. [61]Del Sorbo G, Schoonbeek H, De Waard M A. Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biology, 2000, 30(1): 1-15. [62]Higgins C F, Gottesman M M. Is the multidrug transporter a flippase? Trends in Biochemical Sciences, 1992, 17(1): 18-21. [63]Zwiers L H, Stergiopoulos L, Van Nistelrooy J G M, De Waard M A. ABC transporters and azole susceptibility in laboratory strains of the wheat pathogen Mycosphaerella graminicola. Antimicrobial Agents and Chemotherapy, 2002, 46(12): 3900-3906. [64]Kretschmer M, Leroch M, Mosbach A, Walker A S, Fillinger S, Mernke D, Schoonbeek H J, Pradier J M, Leroux P, De Waard M A, Hahn M. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. Plos Pathogens, 2009, 5(12): e1000696. [65]Gisi U, Sierotzki H, Cook A, McCaffery A. Mechanisms influencing the evolution of resistance to Qo inhibitor fungicides. Pest Management Science, 2002, 58(9): 859-867. [66]Anonymous. FRAC code list: List of pathogens with field resistance towards QoI fungicides. http://www.frac.info/work/Species%20with% 20QoI-resistance%20(Status%20Dec.%202012)l.pdf.2012. [67]Lambowitz A M, Slayman C W. Cyanide-resistant respiration in Neurospora crassa. Journal of Bacteriology, 1971, 108(3): 1087-1096. [68]Joseph-Horne T, Hollomon D W, Wood P M. Fungal respiration: a fusion of standard and alternative components. Biochimica et Biophysica Acta, 2001, 1504(2/3): 179-195. [69]Ziogas B N, Baldwin B C, Young J E. Alternative respiration: a biochemical mechanism of resistance to azoxystrobin (ICIA 5504) in Septoria tritici. Pesticide Science, 1997, 50(1): 28-34. [70]Roohparvar R, De Waard M A, Kema G H J, Zwiers L H. MgMfs1, a major facilitator superfamily transporter from the fungal wheat pathogen Mycosphaerella graminicola, is a strong protectant against natural toxic compounds and fungicides. Fungal Genetics and Biology, 2007, 44(5): 378-388. [71]Ziogas B N, Markoglou A N, Theodosiou D I, Anagnostou A, Boutopoulou S. A high multi-drug resistance to chemically unrelated oomycete fungicides in Phytophthora infestans. European Journal of Plant Pathology, 2006, 115(3): 283-292. [72]Avenot H F, Michailides T J. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection, 2010, 29(7): 643-651. [73]Avenot H F, Sellam A, Karaoglanidis G, Michailides T J. Characterization of mutations in the iron-sulphur subunit of succinate dehydrogenase correlating with boscalid resistance in Alternaria alternata from California pistachio. Phytopathology, 2008, 98(6): 736-742. [74]Avenot H, Sellam A, Michailides T. Characterization of mutations in the membrane-anchored subunits AaSDHC and AaSDHD of succinate dehydrogenase from Alternaria alternata isolates conferring field resistance to the fungicide boscalid. Plant Pathology, 2009, 58(6): 1134-1143. [75]Miyamoto T, Ishii H, Stammler G, Koch A, Ogawara T, Tomita Y, Fountaine J M, Ushio S, Seko T, Kobori S. Distribution and molecular characterization of Corynespora cassiicola isolates resistant to boscalid. Plant Pathology, 2010, 59(5): 873-881. [76]Fernandez-Ortuno D, Chen F, Schnabel G. Resistance to pyraclostrobin and boscalid in Botrytis cinerea isolates from strawberry fields in the Carolinas. Plant Disease, 2012, 96(8): 1198-1203. [77]Skinner W, Bailey A, Renwick A, Keon J, Gurr S, Hargreaves J. A single amino-acid substitution in the iron-sulphur protein subunit of succinate dehydrogenase determines resistance to carboxin in Mycosphaerella graminicola. Current Genetics, 1998, 34(5): 393-398. [78]Gudmestad N C, Arabiat S, Miller J S, Pasche J S. Prevalence and impact of SDHI fungicide resistance in Alternaria solani. Plant Disease, 2013, 97(7): 952-960. [79]van den Bosch F, Paveley N, Shaw M, Hobbelen P, Oliver R. The dose rate debate: does the risk of fungicide resistance increase or decrease with dose? Plant Pathology, 2011, 60(4): 597-606. [80]Rosenberg S M. Evolving responsively: Adaptive mutation. Nature Reviews Genetics, 2001, 2(7): 504-515. [81]Hersh M N, Ponder R G, Hastings P J, Rosenberg S M. Adaptive mutation and amplification in Escherichia coli: two pathways of genome adaptation under stress. Research in Microbiology, 2004, 155(5): 352-359. [82]Brooks A N, Turkarslan S, Beer K D, Lo F Y, Baliga N S. Adaptation of cells to new environments. Wiley Interdisciplinary Reviews-Systems Biology and Medicine, 2011, 3(5): 544-561. [83]Galhardo R S, Hastings P J, Rosenberg S M. Mutation as a stress response and the regulation of evolvability. Critical Reviews in Biochemistry and Molecular Biology, 2007, 42(5): 399-435. [84]祝雯, 詹家绥. 植物病原物的群体遗传学. 遗传, 2012, 34(2): 157-166. Zhu W, Zhan J S. Population genetics of plant pathogens. Hereditas. 2012, 34(2): 157-166. (in Chinese) [85]Hou Y, Luo Q, Chen C, Zhou M. Application of tetra primer ARMS- PCR approach for detection of Fusarium graminearum genotypes with resistance to carbendazim. Australasian Plant Pathology, 2013, 42(1): 73-78. [86]Delgado J A, Lynnes T C, Meinhardt S W, Wise K A, Gudmestad N C, Bradley C A, Markell S G, Goswami R S. Identification of the mutation responsible for resistance to QoI fungicides and its detection in Ascochyta rabiei (teleomorph Didymella rabiei). Plant Pathology, 2013, 62(3): 688-697. [87]Aoki Y, Hada Y, Suzuki S. Development of a multiplex allele-specific primer PCR assay for simultaneous detection of QoI and CAA fungicide resistance alleles in Plasmopara viticola populations. Pest Management Science, 2013, 69(2): 268-273. [88]Luo C X, Cox K D, Amiri A, Schnabel G. Occurrence and detection of the DMI resistance-associated genetic element 'Mona' in Monilinia fructicola. Plant Disease, 2008, 92(7): 1099-1103. [89]Yin Y N, Xiao C L. Molecular characterization and a multiplex allele-specific PCR method for detection of thiabendazole resistance in Penicillium expansum from apple. European Journal of Plant Pathology, 2013, 136(4): 703-713. |
[1] | 李志玲,李香菊,崔海兰,于海燕,陈景超. 牛筋草EPSPS酶联免疫试剂盒的研发及应用[J]. 中国农业科学, 2022, 55(24): 4851-4862. |
[2] | 王帅宇,张子腾,谢爱婷,董杰,杨建国,张爱环. 我国草地贪夜蛾种群杀虫剂靶标基因突变分析[J]. 中国农业科学, 2022, 55(20): 3948-3959. |
[3] | 沙月霞, 黄泽阳, 马瑞. 嗜碱假单胞菌Ej2对稻瘟病的防治效果及对水稻内源激素的影响[J]. 中国农业科学, 2022, 55(2): 320-328. |
[4] | 尹飞,李振宇,SAMINA Shabbir,林庆胜. P450基因在氯虫苯甲酰胺不同抗性品系小菜蛾中的表达及功能分析[J]. 中国农业科学, 2022, 55(13): 2562-2571. |
[5] | 石鑫,李莎,王志敏,付开赟,付文君,姜卫华. 新疆马铃薯甲虫对噻虫嗪的抗性监测及其细胞色素P450基因表达分析[J]. 中国农业科学, 2021, 54(14): 3004-3016. |
[6] | 潘教文, 李臻, 王庆国, 管延安, 李小波, 戴绍军, 丁国华, 刘炜. NaCl处理谷子萌发期种子的转录组学分析[J]. 中国农业科学, 2019, 52(22): 3964-3975. |
[7] | 沙月霞,隋书婷,曾庆超,沈瑞清. 贝莱斯芽孢杆菌E69预防稻瘟病等多种真菌病害的潜力[J]. 中国农业科学, 2019, 52(11): 1908-1917. |
[8] | 孙炳学,石延霞,朱发娣,谢学文,柴阿丽,李宝聚. 多主棒孢SdhB-H278R突变位点AS-real-time PCR 定量检测体系的建立[J]. 中国农业科学, 2018, 51(24): 4647-4658. |
[9] | 贡常委,秦旖曼,屈劲松,王学贵. 四川省草莓灰霉病菌对咯菌腈的抗性测定及其机制[J]. 中国农业科学, 2018, 51(22): 4277-4287. |
[10] | 戚楠楠,张晓燕,苏娜娜,邬奇,耿殿祥,齐学会,魏圣军,崔瑾. UV-A诱导大豆芽苗菜下胚轴中花青苷积累的分子机理[J]. 中国农业科学, 2015, 48(12): 2408-2416. |
[11] | 魏冬, 王涛, 豆威, 王进军. 橘小实蝇谷氨酸脱羧酶的生化及分子特性[J]. 中国农业科学, 2014, 47(16): 3184-3194. |
[12] | 张玮, 乔广行, 黄金宝, 王忠跃, 李兴红. 中国葡萄灰霉病菌对嘧霉胺的抗药性检测[J]. 中国农业科学, 2013, 46(6): 1208-1212. |
[13] | 刘敬, 吴珊珊, 孟玲, 李保平. CO2浓度和抗药性对褐飞虱刺吸取食行为的影响[J]. 中国农业科学, 2013, 46(21): 4471-4477. |
[14] | 高新菊, 张志刚, 段辛乐, 沈慧敏. 二斑叶螨抗四螨嗪品系筛选及其解毒酶活力变化[J]. 中国农业科学, 2012, 45(7): 1432-1438. |
[15] | 宫亚军, 王泽华, 石宝才, 康总江, 朱亮, 郭晓军, 刘建华, 魏书军. 北京地区不同桃蚜种群的抗药性研究[J]. 中国农业科学, 2011, 44(21): 4385-4394. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 317
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 348
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|