Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Melatonin treatment induces chilling tolerance by regulating the contents of polyamine, γ-aminobutyric acid, and proline in cucumber fruit
Miilion P MADEBO, LUO Si-ming, WANG Li, ZHENG Yong-hua, JIN Peng
2021, 20 (11): 3060-3074.   DOI: 10.1016/S2095-3119(20)63485-2
Abstract170)      PDF in ScienceDirect      
The mechanism of melatonin (MT) induced chilling tolerance in harvested cucumber fruit was investigated at commercial maturity.  In this study, cucumber fruits were treated with 100 μmol L–1 MT at 4°C and 90% relative humidity for 15 d of storage.  In comparison with the control, cucumber treatment with MT resulted in reduced chilling injury (CI), decreased electrolyte leakage and enhanced firmness.  The fruits treated with MT showed higher chlorophyll contents in storage conditions with suppressed chlorophyllase enzyme activity.  MT treatment increased arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) enzyme activities.  Moreover, enhanced expression of the Cucumis sativus ADC (CsADC) and C. sativus ODC (CsODC) genes resulted in the accumulation of polyamine contents.  Similarly, proline levels exhibited higher levels among treated fruits.  Meanwhile, the proline synthesizing enzymes △1-pyrroline-5-carboxylate syntheses (P5CS) and ornithine aminotransferase (OAT) were significantly increased, while a catabolic enzyme of proline dehydrogenase (PDH) activity was inhibited by treatment.  In addition, MT induced expression of C. sativus OAT (CsOAT) and C. sativus P5CS (CsP5CS) genes.  Cucumber fruits treated with MT also exhibited higher γ-aminobutyric acid (GABA) content by enhanced GABA transaminase (GABA-T) and glutamate decarboxylase (GAD) enzyme activities and a higher C. sativus GAD (CsGAD) gene expression.  To sum up, the results show that MT treatment enhanced chilling tolerance, which was associated with the regulation of polyamines, as well as proline and γ-aminobutyric acid.
 
Reference | Related Articles | Metrics
Hot air treatment activates defense responses and induces resistance against Botrytis cinerea in strawberry fruit
JIN Peng, ZHENG Cong, HUANG Yu-ping, WANG Xiao-li, LUO Zi-sheng, ZHENG Yong-hua
2016, 15 (11): 2658-2665.   DOI: 10.1016/S2095-3119(16)61387-4
Abstract1423)      PDF in ScienceDirect      
    The effect of hot air (HA, 45°C, 3.5 h) treatment on reducing gray mold caused by Botrytis cinerea in strawberry fruit and the possible mechanisms were investigated. The results showed that HA treatment significantly reduced lesion diameter and enhanced activities of chitinase (CHI), β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) in strawberry fruit. Total phenolic contents were also increased by HA treatment. The activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were higher in HA treated strawberry fruit than those in control. Expression of three defense related genes such as CAT, CCR-1 allele and PLA6 was greatly induced in HA treated strawberry fruit with or without inoculation by B. cinerea. In addition, the in vitro experiment showed that HA treatment inhibited spore germination and tube growth of B. cinerea. These results suggested that HA treatment directly activated disease resistance against B. cinerea in strawberry fruit without priming response and directly inhibiting growth of B. cinerea.
Reference | Related Articles | Metrics