Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Effects of sodium benzoate on growth and physiological characteristics of wheat seedlings under compound heavy metal stress
LIANG Pan-pan, ZHAO Chen, LIN Yuan, GENG Ji-jia, CHEN Yuan, CHEN De-hua, ZHANG Xiang
2020, 19 (4): 1010-1018.   DOI: 10.1016/S2095-3119(19)62723-1
Abstract106)      PDF in ScienceDirect      
In this study, we investigated the effect of exogenous sodium benzoate on wheat seedlings (Yangmai 16) grown under heavy metal stress.  The results showed that 2.4 mmol kg–1 of heavy metals significantly inhibited growth and delayed emergence of wheat seedlings.  Under compound heavy metal stress, application of 2–4 g L–1 sodium benzoate significantly increased (P<0.01) chlorophyll content and chlorophyll fluorescence parameters Fv/Fm and Fv/Fo of wheat, compared to the control (water treatment).  Further analysis showed that application of 2–4 g L–1 sodium benzoate alleviated osmotic stress by promoting the accumulation of osmolytes such as soluble proteins and free proline, increased the activity of superoxide dismutase (SOD) and reduced malondialdehyde content (MDA).  In contrast, higher concentrations of sodium benzoate solution (>6 g L–1) inhibited the growth of wheat seedlings and even caused damage to seedlings.  Correlation analysis showed that when the sodium benzoate concentration was in the range of 1.97–3.12 g L–1 (2016) and 1.58–3.27 g L–1 (2017), values of chlorophyll and its components, root activity, SOD activity, soluble protein, and free proline content were the highest.  When the sodium benzoate concentration was raised to 2.59 g L–1 (2016) or 3.02 g L–1 (2017), MDA content was the lowest.  Ultimately, exogenous sodium benzoate (2–4 g L–1) facilitates root development and improves the root activity of wheat seedlings grown under compound heavy metals stress, thereby effectively alleviating the damage of compound heavy metal stress in wheat seedlings.
Reference | Related Articles | Metrics
Relationship between copulation and cold hardiness in Ophraella communa (Coleoptera: Chrysomelidae)
ZHAO Chen-chen, YUE Lei, WANG Yao, GUO Jian-ying, ZHOU Zhong-shi, WAN Fang-hao
2019, 18 (4): 900-906.   DOI: 10.1016/S2095-3119(19)62591-8
Abstract228)      PDF (830KB)(245)      
Ophraella communa (Coleoptera: Chrysomelidae), the ragweed leaf beetle, is a biological control agent of the invasive common ragweed, Ambrosia artemisiifolia (Asterales: Asteraceae).  Adults can survive cold conditions that occur during winter.  The adults mate before entering overwintering.  Understanding the connection between copulation and overwintering will be useful for determining O. communa seasonality.  Determining the relationship between overwintering and copulation required comparison of mated and unmated beetles at mean lethal temperature (LTemp50) exposures for 2 h.  Cold-related physiological indices, including the water ratio, super cooling point (SCP), cryoprotectant levels, and energy reserve levels, were also measured.  Mating treatment decreased the LTemp50 of both sexes by reducing their mean SCP and water ratios.  Although the changes of cryoprotectant levels in mated adults were not precisely consistent in between the genders, they increased greatly in both males and females.  Body sugar may play a role in copulation and may also elevate cold hardiness in O. communa
Reference | Related Articles | Metrics
An Evaluation of the Infection Status and Source of Subgroup J Avian Leukosis Virus in Cloned Free-Range Layers
ZHANG Pei-pei, LIU Shao-qiong, WANG Jian, WANG Bo, ZHAO Cheng-di, ZHANG Yong-guang
2013, 12 (4): 687-693.   DOI: 10.1016/S2095-3119(13)60287-7
Abstract1435)      PDF in ScienceDirect      
In recent years, subgroup J avian leukosis virus (ALV-J) has been found to frequently infect layers in China. This virus is responsible for economic losses due to both mortality and decreased performance in chickens. In this study, 45-d-old cloned free-range layers were suspected to be infected with ALV and other immunosuppressive diseases because their feathers were unkempt and their growth rate was impaired. To estimate the infection status and determine the source of ALV-J in the flock, 30 cloacal swabs were randomly collected to measure the p27 antigen level by enzyme-linked immunosorbent assay (ELISA). Among the birds that were tested, 87% (26/30) were positive. In addition, 6 anticoagulant blood samples were aseptically collected at random from the flock when the layers were 60 d old. These samples were centrifuged to obtain the leukocytes, which were then used to inoculate chicken embryo fibroblast (CEF) cells for the identification of ALV-J by indirect immunofluorescence (IFA). Of the samples tested, 100% (6/6) were positive. The flock’s production performance was also investigated, and 10 layers were necropsied to evaluate pathological changes at 115 d of age. The flock never laid eggs even though they reached the age of the first laying (110 d). Furthermore, there were pathological changes present, including atrophy of the thymus and bursa of Fabricius, undeveloped ovaries, glandular stomach haemorrhage, and hepatosplenomegaly. Paraffin-embedded sections of intumescent liver and spleen were prepared for antigen localisation using IFA. Positive signals were prevalent in paraffin-embedded sections of the intumescent liver and spleen. Furthermore, provirus DNA was extracted from 4 cloned free-range layers, and 2 paternal parents (HR native cocks), and the gp85 gene of ALV-J was amplified by PCR to analyse the genetic variation. The results of the autogenous variation analysis showed that the 6 strains were 98.5-99.7% homologous. This study indicated that there was persistent infection with ALV-J by dynamic inspection, which seriously reduced the production performance of the flock. In addition, the genetic variation analysis showed that ALV-J in the flock was more likely to have originated from the paternal parent, the HR native cock.
Reference | Related Articles | Metrics