Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Biosynthesis of artemisinic acid in engineered Saccharomyces cerevisiae and its attraction to the mirid bug Apolygus lucorum
TENG Dong, LIU Dan-feng, Khashaveh ADEL, SUN Pei-yao, GENG Ting, ZHANG Da-wei, ZHANG Yong-jun
2022, 21 (10): 2984-2994.   DOI: 10.1016/j.jia.2022.07.040
Abstract155)      PDF in ScienceDirect      

Artemisia annua is an important preferred host of the mirid bug Apolygus lucorum in autumn.  Volatiles emitted from Aannua attract Alucorum.  Volatile artemisinic acid of Aannua is a precursor of artemisinin that has been widely investigated in the Chinese herbal medicine field.  However, little is known at this point about the biological roles of artemisinic acid in regulating the behavioral trends of Alucorum.  In this study, we collected volatiles from Aannua at the seedling stage by using headspace solid phase microextraction (HS-SPME).  Gas chromatography-mass spectrometry (GC-MS) analysis showed that approximately 11.03±6.00 and 238.25±121.67 ng h–1 artemisinic acid were detected in volatile samples and milled samples, respectively.  Subsequently, a key gene for artemisinic acid synthesis, the cytochrome P450 gene cyp71av1, was expressed in engineered Saccharomyces cerevisiae to catalyze the production of artemisinic acid.  After the addition of exogenous artemisinic alcohol or artemisinic aldehyde, artemisinic acid was identified as the product of the expressed gene.  In electroantennogram (EAG) recordings, 3-day-old adult Alucorum showed significant electrophysiological responses to artemisinic alcohol, artemisinic aldehyde and artemisinic acid.  Furthermore, 3-day-old female bugs were significantly attracted by artemisinic acid and artemisinic alcohol at a concentration of 10 mmol L–1, whereas 3-day-old male bugs were attracted significantly by 10 mmol L–1 artemisinic acid and artemisinic aldehyde.  We propose that artemisinic acid and its precursors could be used as potential attractant components for the design of novel integrated pest management strategies to control Alucorum.

Reference | Related Articles | Metrics
Two farnesyl pyrophosphate synthases, GhFPS1–2, in Gossypium hirsutum are involved in the biosynthesis of farnesol to attract parasitoid wasps
ZHANG Hong, HUANG Xin-zheng, JING Wei-xia, LIU Dan-feng, Khalid Hussain DHILOO, HAO Zhi-min, ZHANG Yong-jun
2020, 19 (9): 2274-2285.   DOI: 10.1016/S2095-3119(20)63203-8
Abstract168)      PDF in ScienceDirect      
Sesquiterpenoids play an import role in the direct or indirect defense of plants.  Farnesyl pyrophosphate synthases (FPSs) catalyze the biosynthesis of farnesyl pyrophosphate, which is a key precursor of farnesol and (E)-β-farnesene.  In the current study, two FPS genes in Gossypium hirsutum, GhFPS1 and GhFPS2, were heterologously cloned and functionally characterized in a greenhouse setting.  The open reading frames for full-length GhFPS1 and GhFPS2 were each 1 029 nucleotides, and encoded two proteins of 342 amino acids with molecular weights of 39.4 kDa.  The deduced amino acid sequences of GhFPS1–2 showed high identity to FPSs of other plants.  Quantitative real-time PCR analysis revealed that GhFPS1 and GhFPS2 were highly expressed in G. hirsutum leaves, and were upregulated in methyl jasmonate (MeJA)-, methyl salicylate (MeSA)- and aphid infestation-treated cotton plants.  The recombinant proteins of either GhFPS1 or GhFPS2 plus calf intestinal alkaline phosphatase could convert geranyl diphosphate (GPP) or isopentenyl diphosphate (IPP) to one major product, farnesol.  Moreover, in electrophysiological response and Y-tube olfactometer assays, farnesol showed obvious attractiveness to female Aphidius gifuensis, which is an important parasitic wasp of aphids.  Our findings suggest that two GhFPSs are involved in farnesol biosynthesis and they play a crucial role in indirect defense of cotton against aphid infestation.
Related Articles | Metrics
The Binding Characterization of Cry Insecticidal Proteins to the Brush Border Membrane Vesicles of Helicoverpa armigera, Spodoptera exigua, Spodoptera litura and Agrotis ipsilon
LU Qiong, CAO Guang-chun, ZHANG Li-li, LIANG Ge-mei, GAO Xi-wu, ZHANG Yong-jun , GUO Yu-yuan
2013, 12 (9): 1598-1605.   DOI: 10.1016/S2095-3119(13)60427-X
Abstract1585)      PDF in ScienceDirect      
Cry toxins produced by Bacillus thuringiensis (Bt) are effective biological insecticides against certain insect species. However, there are potential risks of the evolved resistance of insects to Cry toxin owing to decreased binding of toxins to target sites in the brush border membranes of the larva midgut. The Cry toxins with different binding sites in the larval midgut have been considered to be a good combination to deploy in delaying resistance evolution. Bioassay results demonstrated that the toxicity of different Cry toxins ranked differently for each species. The toxicity ranking was Cry1Ac>Cry1Ab>Cry2Ab for Helicoverpa armigera, Cry1B>Cry1C>Cry2Ab for Spodoptera exigua, and Cry2Ab>Cry1B> Cry1C for S. litura. Only Cry2Ab was toxic to Agrotis ipsilon. Binding experiments were performed with 125I-Cry1Ab, 125ICry1Ac, 125I-Cry1B, 125I-Cry1C, 125I-Cry2Ab and the brush border membranes vesicles (BBMV) from H. armigera, S. exigua, S. litura and A. ipsilon. The binding of Cry1Ab and Cry1Ac was shown to be saturable by incubating with increasing concentrations of H. armigera BBMV (Kd=(45.00±2.01) nmol L-1 and (12.80±0.18) nmol L-1, respectively; Bmax=(54.95±1.79) ng and (55.44±0.91) ng, separately). The binding of Cry1B was shown to be saturable by incubating with increasing concentrations of S. exigua BBMV (Kd=(23.26±1.66) nmol L-1; Bmax=(65.37±1.87) ng). The binding of 125ICry toxins was shown to be non-saturable by incubating with increasing concentrations of S. litura and A. ipsilon BBMV. In contrast, Cry1B and Cry1C showed some combination with the BBMV of S. litura, and a certain amount of Cry2Ab could bind to the BBMV of A. ipsilon. These observations suggest that a future strategy could be devised for the focused combination of specific cry genes in transgenic crops to control target pests, widen the spectrum of insecticide effectiveness and postpone insect resistance evolution.
Reference | Related Articles | Metrics
Functional Characteristics of a Novel Chemosensory Protein in the Cotton Bollworm Helicoverpa armigera (Hübner)
ZHANG Tian-tao, WANG Wei-xuan, ZHANG Zi-ding, ZHANG Yong-jun , GUO Yu-yuan
2013, 12 (5): 853-861.   DOI: 10.1016/S2095-3119(13)60304-4
Abstract1743)      PDF in ScienceDirect      
A chemosensory protein named HarmCSP5 in cotton bollworm Helicoverpa armigera (Hübner) was obtained from antennal cDNA libraries and expressed in Escherichia coli. The real time quantitative PCR (RT-qPCR) results indicated that HarmCSP5 gene was mainly expressed in male and female antennae but also expressed in female legs and wings. Competitive binding assays were performed to test the binding affinity of recombinant HarmCSP5 to 60 odor molecules including some cotton volatiles. The resules showed that HarmCSP5 showed strong binding abilities to 4-ehtylbenzaldehyde and 3,4-dimethlbenz aldehyde, whereas methyl phenylacetate, 2-decanone, 1-pentanol, carvenol, isoborneol, nerolidol, 2- nonanone and ethyl heptanoate have relatively weak binding affinity. Moreover, the predicted 3D model of HarmCSP5 consists of six α-helices located among residues 33-38 (α1), 40-48 (α2), 62-72 (α3), 80-96 (α4), 98-108 (α5), and 116-119 (α6), two pairs of disulfide bridges Cys49-Cys55, Cys75-Cys78. The two amino acid residues, Ile94 and Trp101, may play crucial roles in HarmCSP5 binding with ligands and need further study for confirmation.
Reference | Related Articles | Metrics
A Fragment of Cadherin-Like Protein Enhances Bacillus thuringiensis Cry1B and Cry1C Toxicity to Spodoptera exigua (Lepidoptera: Noctuidae)
LU Qiong, ZHANG Yong-jun, CAO Guang-chun, ZHANG Li-li, LIANG Ge-mei, LU Yan-hui, WU Kong-ming, GAO Xi-wu , GUO Yu-yuan
2012, 12 (4): 628-638.   DOI: 10.1016/S1671-2927(00)8583
Abstract1976)      PDF in ScienceDirect      
Cry toxins produced by Bacillus thuringiensis (Bt) are effective biological insecticides against certain insect species. In this study, bioassay results indicated that Cry1B and Cry1C were toxic to Spodoptera exigua. We also identified a cadherin-like gene in S. exigua that could enhance the toxicity of Cry1B and Cry1C. The cadherin-like gene identified from the larvae midgut tissue was cloned by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The full-length cDNA of the gene consisted of 5 220 bp encoding 1 740 amino acid with a predicted molecular mass of 196 kD. BLAST search analysis showed that the predicted amino acid sequence had a high sequence identity to the published sequences of cadherin-like proteins from other Lepidoptera insects. Spatial expression of the cadherin-like gene detected by qRT-PCR analysis revealed that the cadherin-like gene was mainly present in the gut of 4th instar larvae and during different life stages. The results suggested that the commercial development of this synergist has the potential to enhance Cry1B and Cry1C toxicity against Lepidoptera insects.
Reference | Related Articles | Metrics