Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails

Cassava MeRS40 is required for the regulation of plant salt tolerance

MA Xiao-wen, MA Qiu-xiang, MA Mu-qing, CHEN Yan-hang, GU Jin-bao, LI Yang, HU Qing, LUO Qing-wen, WEN Ming-fu, ZHANG Peng, LI Cong, WANG Zhen-yu
2023, 22 (5): 1396-1411.   DOI: 10.1016/j.jia.2023.04.003
Abstract318)      PDF in ScienceDirect      

Soil salinity affects the expression of serine/arginine-rich (SR) genes and isoforms by alternative splicing, which in turn regulates the adaptation of plants to stress.  We previously identified the cassava spliceosomal component 35 like (SCL) and SR subfamilies, belonging to the SR protein family, which are extensively involved in responses to abiotic stresses.  However, the post-transcriptional regulatory mechanism of cassava arginine/serine-rich (RS) subfamily in response to salt stress remains to be explored.  In the current study, we identified 37 genes of the RS subfamily from 11 plant species and systematically investigated the transcript levels of the RS40 and RS31 genes under diverse abiotic stress conditions.  Subsequently, an analysis of the conserved protein domains revealed that plant RS subfamily genes were likely to preserve their conserved molecular functions and played critical functional roles in responses to abiotic stresses.  Importantly, we found that overexpression of MeRS40 in Arabidopsis enhanced salt tolerance by maintaining reactive oxygen species homeostasis and up-regulating the salt-responsive genes.  However, overexpression of MeRS40 gene in cassava reduced salt tolerance due to the depression of its endogenous gene expression by negative autoregulation of its own pre-mRNA.  Moreover, the MeRS40 protein interacted with MeU1-70Ks (MeU1-70Ka and MeU1-70Kb) in vivo and in vitro, respectively.  Therefore, our findings highlight the critical role of cassava SR proteins in responses to salt stress in plants. 

Reference | Related Articles | Metrics
Identification and functional prediction of long intergenic noncoding RNAs in fetal porcine longissimus dorsi muscle
LI Cen-cen, YU Shu-long, REN Hai-feng, WU Wei, WANG Ya-ling, HAN Qiu, XU Hai-xia, XU Yong-jie, ZHANG Peng-peng
2021, 20 (1): 201-211.   DOI: 10.1016/S2095-3119(20)63261-0
Abstract174)      PDF in ScienceDirect      
Pigs are globally farmed animals which provide protein for human consumption in the form of skeletal muscle.  To better understand the function of long intergenic noncoding RNAs (lincRNAs) in porcine skeletal muscle growth and development, we collected RNA-seq data from porcine longissimus dorsi muscle (LDM) during embryonic development.  We identified a total of 739 lincRNA transcripts, which were distributed on all chromosomes except the chromosome Y, and analyzed their molecular characteristics.  Compared to protein-coding genes, lincRNAs showed shorter transcripts, longer exons, fewer exons and higher tissue specificity.  In addition, the abundance of lincRNAs in five embryonic development stages were analyzed and 45 differentially expressed lincRNAs were screened, three of which were highly expressed in LDM during porcine embryonic development.  Finally, we predicted the potential target genes and functions of the lincRNAs, and identified 1 537 cis-target genes and 8 571 trans-target genes.  Furthermore, we identified two key candidate lincRNAs involved in muscle development, XLOC_024652 and XLOC_001832, for post-trial validation.  Our results provide a genome-wide resource of lincRNAs which are potentially involved in porcine embryonic skeletal muscle development and lay a foundation for the further study of their functions.
 
Reference | Related Articles | Metrics
Plant regeneration via protoplast electrofusion in cassava
WEN Feng, SU Wen-pan, ZHENG Hua, YU Ben-chi, MA Zeng-feng, ZHANG Peng, GUO Wen-wu
2020, 19 (3): 632-642.   DOI: 10.1016/S2095-3119(19)62711-5
Abstract142)      PDF in ScienceDirect      
Protoplast electrofusion between callus protoplasts of cultivar TMS60444 and mesophyll protoplasts of cultivar SC8 was performed as an approach for the genetic improvement of cassava. The fusion products were subsequently cultured in protoplast culture medium (TM2G) with gradual dilution for approximately 1–2 months.  Then the protoplast-derived compact calli were transferred to suspension culture medium (SH) for suspension culture.  The cultured products developed successively into embryos, mature embryos, and shoots on somatic embryo emerging medium (MSN), embryo maturation medium (CMM), and shoot elongation medium (CEM), respectively.  And the shoots were then rooted on Murashige and Skoog (1962) medium (MS).  Sixty-six cell lines were obtained and 12 of them developed into plantlets.  Based on assessment of ploidy level and chromosome counting, four of these plantlets were tetraploid and the remaining eight were diploid.  Based on assessment of ploidy level and simple sequence repeat (SSR) analysis, nine tetraploid cell lines, one diploid variant plant line and nine variant cell lines were obtained.  The diploid variant plant line and the nine variant cell lines all showed partial loss of genetic material compared to that of the parent TMS60444, based on SSR patterns.  These results showed that some new germplasm of cassava were created.  In this study, a protocol for protoplast electrofusion was developed and validated.  Another important conclusion from this work is the confirmation of a viable protocol for the regeneration of plants from cassava protoplasts.  Going forward, we hope to provide technical guidance for cassava tissue culture, and also provide some useful inspiration and reference for further genetic improvement of cassava.
 
Reference | Related Articles | Metrics
Carbon cycle in response to residue management and fertilizer application in a cotton field in arid Northwest China
ZHANG Peng-peng, XU Shou-zhen, ZHANG Guo-juan, PU Xiao-zhen, WANG Jin, ZHANG Wang-feng
2019, 18 (5): 1103-1119.   DOI: 10.1016/S2095-3119(18)62075-1
Abstract178)      PDF in ScienceDirect      
Understanding the influence of farming practices on carbon (C) cycling is important for maintaining soil quality and mitigating climate change, especially in arid regions where soil infertility, water deficiency, and climate change had significantly influenced on agroecosystem.  A field experiment was set up in 2009 to examine the influence of residue management and fertilizer application on the C cycle in a cotton field in the Xinjiang Uygur Autonomous Region of Northwest China.  The study included two residue management practices (residue incorporation (S) and residue removal (NS)) and four fertilizer treatments (no fertilizer (CK), organic manure (OM), chemical fertilizer (NPK), chemical fertilizer plus organic manure (NPK+OM)).  Soil organic carbon (SOC) and some of its labile fractions, soil CO2 flux, and canopy apparent photosynthesis were measured during the cotton growing seasons in 2015 and 2016.  The results showed that SOC, labile SOC fractions, canopy apparent photosynthesis, and soil CO2 emission were significantly greater in S+NPK+OM (residue incorporation+chemical fertilizer) than in the other treatments.  Analysis of all data showed that canopy apparent photosynthesis and soil CO2 emission increased as SOC increased.  The S+OM (residue incorporation+organic manure) and S+NPK+OM treatments were greater for soil C sequestration, whereas the other treatments resulted in soil C loss.  The S+NPK treatment is currently the standard management practice in Xinjiang.  The results of this study indicate that S+NPK cannot offset soil C losses due to organic matter decomposition and autotrophic respiration.  Residue return combined with NPK fertilizer and organic manure application is the preferred strategy in arid regions for increasing soil C sequestration. 
Reference | Related Articles | Metrics
Effect of sucrose on cryopreservation of pig spermatogonial stem cells
PAN Chuan-ying, YU Shuai, ZHANG Peng-fei, WANG Bo, ZHU Zhen-dong, LIU Ying-ying, ZENG Wen-xian
2017, 16 (05): 1120-1129.   DOI: 10.1016/S2095-3119(16)61489-2
Abstract890)      PDF in ScienceDirect      
Sucrose is known to play an important role in the cryopreservation of sperm and female gonads; however, its effect on the cryopreservation of pig spermatogonial stem cells (pSSCs) has not been tested.  The aim of this work was to study the effect of sucrose during pSSC cryopreservation and to find the most effective concentration in freezing medium.  pSSCs were cryopreserved with freezing media containing different concentrations of sucrose (70, 140, 210, and 280 mmol L–1) and a control group without sucrose.  The survival rates, plasma membrane integrity, and mitochondrial membrane potential of thawed cells were detected by trypan blue (TB) staining, SYBR-14/propidium iodide (PI) dual staining, and JC-1 staining, respectively.  All the staining results showed an obvious increase in cell survival in the sucrose-treated groups as compared to that in the control group, with the exception of 280 mmol L–1 sucrose.  Moreover, the 210 mmol L–1 sucrose group yielded the highest survival rate among all the groups (P<0.05).  The results of SYBR-14/PI dual staining and JC-1 staining were consistent with those of TB staining as above described.  Quantitative real-time PCR (qRT-PCR) indicated that the mRNA levels of three apoptosis-promoting genes (BAX, APAF1 and CASPASE9) were significantly higher in thawed cells than in cells before freezing (P<0.05).  Moreover, the mRNA level of one anti-apoptotic gene (XIAP) was significantly lower in thawed cells than in cells before freezing (P<0.05).  When comparing the mRNA expression of apoptosis-related genes in thawed cells, the mRNA level of the anti-apoptotic genes in the control group was significantly lower than that in the sucrose-treated
groups (P<0.05).  Western blot analyses showed that the expression levels of cleaved CASPASE9, CASPASE3 and PARP-1 in the sucrose-treated groups were lower than those in the control group and were the lowest in the 210 mmol L–1 sucrose group.  Both qRT-PCR and Western blot analyses suggested that sucrose inhibited cell apoptosis during freezing and thawing.  Briefly, sucrose promoted pSSCs survival after freezing and thawing, especially at a concentration of 210 mmol L–1, which possibly assisted pSSC dehydration and inhibited cell apoptosis.  These findings hold great promise for further studies of the regulatory mechanism of proliferation and differentiation of pSSCs. 
Reference | Related Articles | Metrics
Technical and environmental efficiency of hog production in China -A stochastic frontier production function analysis
ZHOU Ying-heng, ZHANG Xiao-heng, TIAN Xu, GENG Xian-hui, ZHANG Peng, YAN Bin-jian
2015, 14 (6): 1069-1080.   DOI: 10.1016/S2095-3119(14)60990-4
Abstract2004)      PDF in ScienceDirect      
This article analyses the technical and environmental efficiency of hog production in China using data from the China Agricultural Product Cost-Benefit Compilation (NDRC 2005–2013) and the First National Census of Pollution: Manual of Discharge Coefficient of Livestock and Poultry Industry (IEDA and NIES 2009). The empirical results show a great variation in environmental efficiency, ranging from 0.344 to 0.973 with a mean value of 0.672 that declines over time. Southwest China is found to be the most environmentally efficient region, while the Northeast and the Northwest are the least efficient. Another finding is that technical and environmental efficiencies are highly correlated in hog production; the most environmentally efficient regions are usually found to have high technical efficiency, and vice versa. In addition, we computed the output elasticities with respect to each factor input. The results show that feed is the most efficient input, with an output elasticity of approximately 0.551, which is much higher than the elasticity of the nitrogen surplus, other capital or labour. The output elasticity with respect to the nitrogen surplus is 0.287 on average. Finally, the scale elasticity in hog production is slightly higher than 1.
Reference | Related Articles | Metrics
Proteomic Analysis of Fruit Bending in Cucumber (Cucumis sativus L.)
WANG Li-li, ZHANG Peng, QIN Zhi-wei , ZHOU Xiu-yan
2014, 13 (5): 963-974.   DOI: 10.1016/S2095-3119(13)60406-2
Abstract1934)      PDF in ScienceDirect      
In cucumber, fruit shape is an important quality criterion, and fruit bending is known to limit growth, yield, and taste. To investigate the post-transcriptional changes that regulate fruit bending and to better understand the underlying molecular mechanisms, we generated a proteomic profile of the abdomen and back of cucumber bending fruit. Two-dimensional gel electrophoresis (2-DE) allowed the detection of approximately 900 distinct protein spots in each gel, 32 of which were differentially expressed in the abdomen and back of bending cucumber fruit. Ten of the differentially expressed proteins were analyzed using matrix-assisted laser ionization time of flight mass spectrometry (MALDI-TOF/MS). A search of primary databases showed that the identified proteins are involved in various metabolic processes and cellular responses, including photosynthesis metabolism, energy metabolism, defense and stress response, and regulation. The identified proteins included large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase, which are involved in photosynthesis and photorespiratory metabolism, and isocitrate dehydrogenase, which is involved in the tricarboxylic acid cycle. It is possible that imbalances in catabolic and anabolic processes directly affect the bending of cucumber fruit. The predicted function of the cobalamin- independent methionine synthase isozyme is closely related to ethylene biosynthesis; fruit bending may be regulated by ethylene, or by ethylene signaling crosstalk during fruit development. The 14-3-3 protein is usually considered to be a regulation-related protein, which plays a role in regulating cell hyperplasia, cell differentiation during growth, and apoptosis during senescence. Involvement of guanosine triphosphate (GTP)-binding proteins in signal transmission is known to regulate the development of cells in cucumber fruits and to play a role in fruit shape variation. Patterns of protein expression showed high repeatability. We hypothesize that these proteins may play an important role in growth and bending of cucumber fruits. The results of our study provide insight into the genetic mechanism underlying fruit bending in cucumber, and may help to promote cultivation of new varieties with superior fruits.
Reference | Related Articles | Metrics
Alterations of Alternative Splicing Patterns of Ser/Arg-Rich (SR) Genes in Response to Hormones and Stresses Treatments in Different Ecotypes of Rice (Oryza sativa)
ZHANG Peng, DENG Heng, XIAO Fang-ming , LIU Yong-sheng
2013, 12 (5): 737-748.   DOI: 10.1016/S2095-3119(13)60260-9
Abstract1602)      PDF in ScienceDirect      
Ser/Arg-rich (SR) genes encode proteins that play pivotal roles in both constitutive and alternative splicing of pre-mRNA. However, not much effort has been made to investigate the alternative splicing of their own pre-mRNA. In this study, we conducted comprehensive analyses of pre-mRNA splicing for 22 SR genes in three rice (Oryza sativa L.) ecotypes indica, japonica and javanica. Using different ecotypes we characterized the variations in expression and splicing patterns of rice SR genes in different tissues and at different developmental stages. In addition, we compared the divergence in expression and splicing patterns of SR genes from seedlings of different rice ecotypes in response to hormones application and environmental stresses. Our results revealed the complexity of alternative splicing of SR genes in rice. The splicing varies in different tissues, in different ecotypes, in response to stresses and hormones. Thus, our study suggested that SR genes were subjected to sophisticated alternative splicing although their encoding proteins were involved in the splicing process.
Reference | Related Articles | Metrics