Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Innovation of the double-maize cropping system based on cultivar growing degree days for adapting to changing weather conditions in the North China Plain
WANG Dan, LI Guo-rui, ZHOU Bao-yuan, ZHAN Ming, CAO Cou-gui, MENG Qing-feng, XIA Fei, MA Wei, ZHAO Ming
2020, 19 (12): 2997-3012.   DOI: 10.1016/S2095-3119(20)63213-0
Abstract112)      PDF in ScienceDirect      
Double-maize cropping system is an effective option for coping with climate change in the North China Plain.  However, the effects of changes in climate on the growth and yield of maize in the two seasons are poorly understood.  Forty-six cultivars of maize with different requirements for growing degree days (GDD), categorized as high (H), medium (M) or low (L), and three cultivar combinations for two seasons as LH (using JD27 and DMY1 from category L in the first season; and YD629 and XD22 from category H in the second season), MM (using JX1 and LC3 from category M in the first season; and ZD958 and JX1 from category M in the second season) and HL (using CD30 and QY9 from category H in the first season; and XK10 and DMY3 from category L in the second season) were tested to examine the eco-physiological determinants of maize yield from 2015 to 2017.  The correlations between the combinations of cultivars and grain yield were examined.  The combination LH produced the highest annual grain yield and total biomass, regardless of the year.  It was followed, in decreasing order, by MM and HL.  Higher grain yield and biomass in LH were mainly due to the greater grain yield and biomass in the second season, which were influenced mainly by the lengths of the pre- and post-silking periods and the rate of plant growth (PGR).  Temperature was the primary factor that influenced dry matter accumulation.  In the first season, low temperatures during pre-silking decreased both the duration and PGR in LH, whereas high temperatures during post-silking decreased the PGR in MM and HL, resulting in no significant differences in biomass being observed among the three combinations.  In the second season, high temperatures decreased both the PGR and pre- and post-silking duration in MM and HL, and consequently, the biomass of those two combinations were lower than that in LH.  Moreover, because of lower GDD and radiation in the first season and higher grain yield in the second season, production efficiency of temperature and radiation (Ra) was the highest in LH.  More importantly, differences in temperature and radiation in the two seasons significantly affected the rate and duration of growth in maize, and thereby affecting both dry matter and grain yield.  Our study indicated that the combination of LH is the best for optimizing the double-maize system under changing climatic conditions in the North China Plain.
Reference | Related Articles | Metrics
Effects of N Management on Yield and N Uptake of Rice in Central China
PANSheng-gang , HUANG Sheng-qi, ZHAI Jing, WANG Jing-ping, CAO Cou-gui, CAI Ming-li, ZHAN Ming , TANG Xiang-ru
2012, 12 (12): 1993-2000.   DOI: 10.1016/S1671-2927(00)8736
Abstract1405)      PDF in ScienceDirect      
Efficient N fertilizer management is critical for the economic production of rice and the long-term protection of environmental quality. A field experiment was designed to study the effects of N fertilizer management practices on grain yield and N uptake of rice. The experiment was laid out in the randomized complete block design with four replications in Central China during 2008 and 2009. Five N treatments denoted as N0, N150A, N150B, N240A, and N240B, respectively, were studied. N0 represented no N application and served as a control, N150A and N150B indicated the total N application of 150 kg N ha-1 but with two different application schedules (A and B) across the early stage of rice growth. Schedule A was applied as follows: 40% basal, 30% at 10 d after transplanting (DAT) and 30% at 36 DAT (nearly at the panicle initiation stage), while schedule B was as follows: 30% at basal, 20% at 10 DAT, and 50% at 36 DAT. Similarly, N240A and N240B indicated the total N application of 240 kg N ha-1 with schedules A and B as described above. To quantify N uptake from fertilizer and soil, a 15N experiment was also conducted within the main experimental field, with micro-plots. Grain yields were significantly increased as N rates increased from 0 to 240 kg N ha-1. At the same rate, splitting N application as schedule B significantly increased the grain yield, spikelets per panicle, percentage of ripened grain, and 1 000-grain weight, compared with the N application according to schedule A. Mean rice recovery of N fertilizer by 15N tracing method ranged from 25.39% at N240A to 34.89% at N150B, however, N fertilizer residual rate in the soil ranged from 12.40% at N240A to 16.61% at N150B. About 31.5 and 28.5% of total uptake of 15N derived from basal fertilizer was absorbed at panicle initiation and heading stages, respectively. However, 65.6-92.5% of total uptake of 15N derived from topdressing fertilizer was absorbed at the heading stage. Based on yield and nitrogen recovery efficiency, splitting N application according to schedule B at the rate of 240 kg N ha-1 will be more profitable among the tested five N treatments in Central China.
Reference | Related Articles | Metrics