Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Identification and characterization of FpRco1 in regulating vegetative growth and pathogenicity based on T-DNA insertion in Fusarium pseudograminearum
Haiyang Li, Yuan Zhang, Cancan Qin, Zhifang Wang, Lingjun Hao, Panpan Zhang, Yongqiang Yuan, Chaopu Ding, Mengxuan Wang, Feifei Zan, Jiaxing Meng, Xunyu Zhuang, Zheran Liu, Limin Wang, Haifeng Zhou, Linlin Chen, Min Wang, Xiaoping Xing, Hongxia Yuan, Honglian Li, Shengli Ding
2024, 23 (9): 3055-3065.   DOI: 10.1016/j.jia.2024.01.001
Abstract161)      PDF in ScienceDirect      
Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot (FCR) in wheat and poses a significant threat to wheat production in terms of grain yield and quality.  However, the mechanism by which Fpseudograminearum infects wheat remains unclear.  In this study, we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of Fpseudograminearum.  By screening this mutant library, we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.  Among these mutants, one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1, encoding essential component of the Rpd3S histone deacetylase complex in F. pseudograminearum.  To further investigate the role of FpRCO1 in Fpseudograminearum, we employed a split-marker approach to knock out FpRCO1 in Fpseudograminearum WZ-8A.  FpRCO1 deletion mutants exhibit reduced vegetative growth, conidium production, and virulence in wheat coleoptiles and barley leaves, whereas the complementary strain restores these phenotypes.  Moreover, under stress conditions, the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl, sorbitol, and SDS, but possessed reduced sensitivity to H2O2 compared to these characteristics in the wild-type strain.  RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression (particularly the downregulation of TRI gene expression), thus resulting in significantly reduced deoxynivalenol (DON) production.  In summary, our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development, asexual reproduction, DON production, and pathogenicity of Fpseudograminearum.  This study provides valuable insights into the molecular mechanisms underlying Fpseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease.


Reference | Related Articles | Metrics

A rapid and visual detection method for Crimean-Congo hemorrhagic fever virus by targeting S gene

Xingqi Liu, Zengguo Cao, Boyi Li, Pei Huang, Yujie Bai, Jingbo Huang, Zanheng Huang, Yuanyuan Zhang, Yuanyuan Li, Haili Zhang, Hualei Wang
2024, 23 (6): 2149-2153.   DOI: 10.1016/j.jia.2024.03.050
Abstract107)      PDF in ScienceDirect      
Reference | Related Articles | Metrics

Fine-mapping of a candidate gene for web blotch resistance in Arachis hypogaea L.

Xiaohui Wu, Mengyuan Zhang, Zheng Zheng, Ziqi Sun, Feiyan Qi, Hua Liu, Juan Wang, Mengmeng Wang, Ruifang Zhao, Yue Wu, Xiao Wang, Hongfei Liu, Wenzhao Dong, Xinyou Zhang
2024, 23 (5): 1494-1506.   DOI: 10.1016/j.jia.2023.10.036
Abstract113)      PDF in ScienceDirect      
Peanut (Arachis hypogaea L.) is a globally important oil crop.  Web blotch is one of the most important foliar diseases affecting peanut, which results in serious yield losses worldwide.  Breeding web blotch-resistant peanut varieties is the most effective and economically viable method for minimizing yield losses due to web blotch.  In the current study, a bulked segregant analysis with next-generation sequencing was used to analyze an F2:3 segregating population and identify candidate loci related to web blotch resistance.  Based on the fine-mapping of the candidate genomic interval using kompetitive allele-specific PCR (KASP) markers, we identified a novel web blotch resistance-related locus spanning approximately 169 kb on chromosome 16.  This region included four annotated genes, of which only Arahy.35VVQ3 had a non-synonymous single nucleotide polymorphism in the coding region between the two parents.  Two markers (Chr.16.12872635 and Chr.16.12966357) linked to this gene were shown to be co-segregated with the resistance of peanut web blotch by 72 randomly selected recombinant inbred lines (RIL), which could be used in marker-assisted breeding of resistant peanut varieties.
Reference | Related Articles | Metrics
Straw interlayer improves sunflower root growth: Evidence from moisture and salt migration and the microbial community in saline-alkali soil 
Mengmeng Chen, Guoli Wang, Yupeng Jing, Jie Zhou, Jiashen Song, Fangdi Chang, Ru Yu, Jing Wang, Weini Wang, Xia Sun, Hongyuan Zhang, Yuyi Li
2024, 23 (11): 3870-3881.   DOI: 10.1016/j.jia.2024.03.048
Abstract109)      PDF in ScienceDirect      
A straw interlayer added to soil can effectively reduce soil salinity effects on plant growth, however, the effects of soil moisture, salt and microbial community composition on plant growth under a straw interlayer are unclear.  A rhizobox study was conducted to investigate the role of straw interlayer thickness on soil moisture, salt migration, microbial community composition, as well as root growth in sunflower.  The study included four treatments: Control (no straw interlayer); S3 (straw interlayer of 3.0 cm); S5 (straw interlayer of 5.0 cm); S7 (straw interlayer of 7.0 cm).  Straw interlayer treatments increased soil moisture by 8.2–11.0% after irrigation and decreased soil salt content after the bud stage in 0–40 cm soil.  Total root length, total root surface area, average root diameter, total root volume and the number of root tips of sunflower plants were higher under straw interlayer treatments than in the control, and were the highest under the S5 treatment.  This stimulated root growth was ascribed to the higher abundance of Chloroflexi and Verrucomicrobia bacteria in soil with a straw interlayer, which was increased by 55.7 and 54.7%, respectively, in the S5 treatment.  Addition of a straw interlayer of 5 cm thickness is a practical and environmentally feasible approach for improving sunflower root growth in saline-alkali soil.


Reference | Related Articles | Metrics
A candidate tick-borne encephalitis virus vaccine based on virus-like particles induces specific cellular and humoral immunity in mice
Mengyao Zhang, Hongli Jin, Cuicui Jiao, Yuanyuan Zhang, Yujie Bai, Zhiyuan Gong, Pei Huang, Haili Zhang, Yuanyuan Li, Hualei Wang
DOI: 10.1016/j.jia.2024.09.024 Online: 26 September 2024
Abstract40)      PDF in ScienceDirect      

Tick-borne encephalitis (TBE) is an important zoonotic viral disease transmitted by ticks. In recent decades, global climate change has increased human exposure to ticks, and mortality rates have gradually risen. Effective vaccines are essential for controlling TBE as specific antiviral treatment is unavailable. Vaccine candidates based on virus-like particles (VLPs) have previously been demonstrated to be efficient in eliciting excellent immune responses against influenza virus and SARS-CoV-2. Here, we constructed TBE virus (TBEV) VLPs containing the envelope and membrane proteins derived from the Far Eastern TBEV strain (WH2012) using an insect cell-baculovirus expression system. Induction of immune responses was investigated in mice following intramuscular injection with the TBEV VLPs vaccine candidates formulated of Poly(I:C) & Montanide ISA 201VG combination adjuvants. Mice produced memory T-cells and serum-specific IgG antibodies that averaged up to 1:104.6 and remained at 1:104 (mean) for 24 weeks after three immunizations. TBEV VLPs vaccine was able to provide long-term antibody protection against TBEV, making it a promising subunit vaccine candidate for this disease.

Reference | Related Articles | Metrics
Mild deficit irrigation delays flag leaf senescence and increases yield in drip-irrigated spring wheat by regulating endogenous hormones
Ziqiang Che, Shuting Bie, Rongrong Wang, Yilin Ma, Yaoyuan Zhang, Fangfang He, Guiying Jiang
DOI: 10.1016/j.jia.2025.03.009 Online: 21 March 2025
Abstract21)      PDF in ScienceDirect      

Drought is one of the important stress factors affecting the growth and development process of wheat in China’s arid zones, which severely limits the yield.  This study examined the impact of deficit irrigation on the flag leaf protection system and yield of drip-irrigated spring wheat during the growth stages in arid zones.  Additionally, the study aimed to explicate the optimal water supply mode for efficient production under drip irrigation conditions and to provide technical support for water-saving and high-yield cultivation of drip-irrigated wheat.  The experiment was conducted with the split plot design, utilization the water-sensitive variety Xinchun 22 (XC22) and the drought-tolerant variety Xinchun 6 (XC6) as the main plot, while the fully irrigated control (CK, 75-80% FC, FC is field water holding capacity), mild deficit (T1, 60-65% FC) and moderate deficit (T2, 45-50% FC) at tillering stage, and mild deficit (J1, 60-65% FC) and moderate deficit (J2, 45-50% FC) at jointing stage were used as the subplot.  Systematic study were conducted on the regulatory effects of deficit irrigation during tillering and jointing stages on protective substances, membrane lipid metabolism, endogenous hormones in flag leaf, and yield of spring wheat.  Compared with T2 and J2 treatments, T1 and J1 treatments was beneficial for increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), proline (Pro), indole-3-acetic acid (IAA), zeatin riboside (ZR), IAA/ABA, ZR/ABA, IAA/ZR, and (IAA+ZR)/ABA, while reducing the levels of hydrogen peroxide (H2O2), superoxide anion radicals (O2-), malondialdehyde (MDA), phosphatidic acid (PA), free fatty acids (FFA), abscisic acid (ABA), phospholipase D (PLD), and lipoxygenase (LOX), alleviating flag leaf senescence, and increasing yield.  Under T1 treatment, the SOD, POD, CAT, and Pro levels of flag leaves in XC6 were 11.14, 8.08, 12.98, and 3.66% higher than those of CK treatment, and under J1 treatment, they were 6.43, 4.49, 7.36, and 2.50% higher than those of CK treatment.  Under T1 treatment in XC6, the IAA, ZR levels of flag leaf, spike number, grains per spike, 1,000 grain weight and yield were 10.50, 5.79, 3.10, 8.84, 3.78, and 10.52% higher than those of CK treatment, and under J1 treatment, they were 5.36, 3.94, 2.40, 3.72, 1.37, and 4.46% higher than those of CK treatment.  Compared with XC22, XC6 was more conducive to the improvement of flag leaf protective substances, IAA, ZR, dry matter weight, yield components and yield.  The correlation analysis showed significant positive correlation between IAA and ZR with SOD, POD, CAT, proline, and yield.  IAA and ZR promoted the enhancement of protective enzyme activity, thereby clearing reactive oxygen species to cope with oxidative stress caused by drought and achieve the effect of delaying senescence.  Principal component analysis showed that yield components, dry matter weight, had a direct effect on yield.  Mild deficiency during tillering stage without water stress in other stages could effectively optimize yield components, not only achieved high yield while increasing protective substances, but also reduced reactive oxygen species content.  It could be recommended as a water-saving and high-yield production mode for drip irrigation of spring wheat in Xinjiang.

Related Articles | Metrics
Optimization of fertilization combined with water-saving irrigation improves the water and nitrogen utilization efficiency of wheat and reduces nitrogen loss in the Nansi Lake Basin, China
Jingyi Feng, He Zhang, Hongyuan Zhang, Xirui Kang, Hui Wang, Hong Pan, Quangang Yang, Zhongchen Yang, Yajie Sun, Yanhong Lou, Zhuge Yuping
DOI: 10.1016/j.jia.2025.03.013 Online: 22 March 2025
Abstract6)      PDF in ScienceDirect      

The eutrophication of rivers and lakes is becoming increasingly common, primarily because of pollution from agricultural non-point sources. We investigated the effects of optimized water and fertilizer treatments on agricultural non-point source pollution in the Nansi Lake region. The water heat carbon nitrogen simulator model was used to analyze water and nitrogen transport in Nansi Lake wheat fields. Four water and fertilizer treatments were set up: conventional fertilization and irrigation (CK), reduced controlled-release fertilizer and conventional irrigation (F2W1), an equal amount of controlled-release fertilizer and reduced irrigation (F1W2), and reduced controlled-release fertilizer and reduced irrigation (F2W2). The results indicated that the replacement of conventional fertilizers with controlled-release fertilizers, combined with reduced irrigation, led to reduced nitrogen loss. Compared with those of the CK, the cumulative nitrogen leaching and ammonia volatilization of F2W1 were reduced by 8.90 and 41.67%, respectively; under F1W2, the same parameters were reduced by 12.50 and 15.99%, respectively. Compared with the other treatments, F2W2 significantly reduced nitrogen loss while producing a stable yield. Compared with those of the CK, ammonia volatilization and nitrogen loss due to leaching were reduced by 29.17 and 27.13%, respectively, water and nitrogen use efficiencies increased by 11.38 and 17.80%, respectively. F2W2 showed the best performance among the treatments, considering water and fertilizer management. Our findings highlight the effectiveness of optimizing water and fertilizer application in improving the water and nitrogen use efficiency of wheat, which is of great significance for mitigating nitrogen loss from farmland in the Nansi Lake region.

Reference | Related Articles | Metrics
Research on grain supply and demand matching in the Beijing–Tianjin–Hebei Region based on ecosystem service flows
Jiaxin Miao, Peipei Pan, Bingyu Liu, XiaowenYuan, Zijun Pan, Linsi Li, Xinyun Wang, Yuan Wang, Yongqiang Cao, Tianyuan Zhang
DOI: 10.1016/j.jia.2025.04.024 Online: 22 April 2025
Abstract4)      PDF in ScienceDirect      

A comprehensive assessment of grain supply, demand, and ecosystem service flows is essential for identifying grain movement pathways, ensuring regional grain security, and guiding sustainable management strategies. However, current studies primarily focus on short-term grain provision services while neglecting the spatiotemporal variations in grain flows across different scales. This gap limits the identification of dynamic matching relationships and the formulation of optimization strategies for balancing grain flows. This study examined the spatiotemporal evolution of grain supply and demand in the Beijing–Tianjin–Hebei (BTH) region from 1980 to 2020. Using the Enhanced Two-Step Floating Catchment Area method, the grain provision ecosystem service flows were quantified, the changes in supply–demand matching under different flow scenarios were analyzed and the optimal distance threshold for grain flows was investigated. The results revealed that grain production follows a spatial distribution pattern characterized by high levels in the southeast and low levels in the northwest. A significant mismatch exists between supply and demand, and it shows a scale effect. Deficit areas are mainly concentrated in the northwest, while surplus areas are mainly located in the central and southern regions. As the spatial scale increases, the ecosystem service supply–demand ratio (SDR) classification becomes more clustered, while it exhibits greater spatial SDR heterogeneity at smaller scales. This study examined two distinct scenarios of grain provision ecosystem service flow dynamics based on 100 km and 200 km distance thresholds. The flow increased significantly, from 2.17 to 11.81 million tons in the first scenario and from 2.41 to 12.37 million tons in the second scenario over nearly 40 years, forming a spatial movement pattern from the central and southern regions to the surrounding areas. Large flows were mainly concentrated in the interior of urban centers, with significant outflows between cities such as Baoding, Shijiazhuang, Xingtai, and Hengshui. At the county scale, supply–demand matching patterns remained consistent between the grain flows in the two scenarios. Notably, incorporating grain flow dynamics significantly reduced the number of grain-deficit areas compared to scenarios without grain flowIn 2020, grain-deficit counties decreased by 28.79% and 37.88%, and cities by 12.50% and 25.0% under the two scenarios, respectively. Furthermore, the distance threshold for achieving optimal supply and demand matching at the county scale was longer than at the city scale in both flow scenarios. This study provides valuable insights into the dynamic relationships and heterogeneous patterns of grain matching, and expands the research perspective on grain and ecosystem service flows across various spatiotemporal scales.

Reference | Related Articles | Metrics