Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Transcriptome-based analysis of key genes and pathways affecting the linoleic acid content in chickens
ZHAO Wen-juan, YUAN Xiao-ya, XIANG Hai, MA Zheng, CUI Huan-xian, LI Hua, ZHAO Gui-ping
2023, 22 (12): 3744-3754.   DOI: 10.1016/j.jia.2023.02.019
Abstract226)      PDF in ScienceDirect      

Linoleic acid is an essential polyunsaturated fatty acid that cannot be synthesized by humans or animals themselves and can only be obtained externally.  The amount of linoleic acid present has an impact on the quality and flavour of meat and indirectly affects consumer preference.  However, the molecular mechanisms influencing the deposition of linoleic acid in organisms are not clear.  As the molecular mechanisms of linoleic acid deposition are not well understood, to investigate the main effector genes affecting the linoleic acid content, this study aimed to screen for hub genes in slow-type yellow-feathered chickens by transcriptome sequencing (RNA-Seq) and weighted gene coexpression network analysis (WGCNA).  We screened for candidate genes associated with the linoleic acid content in slow-type yellow-feathered broilers.  A total of 399 Tiannong partridge chickens were slaughtered at 126 days of age, fatty acid levels were measured in pectoral muscle, and pectoral muscle tissue was collected for transcriptome sequencing.  Transcriptome sequencing results were combined with phenotypes for WGCNA to screen for candidate genes.  KEGG enrichment analysis was also performed on the genes that were significantly enriched in the modules with the highest correlation.  A total of 13 310 genes were identified after quality control of transcriptomic data from 399 pectoral muscle tissues.  WGCNA was performed, and a total of 26 modules were obtained, eight of which were highly correlated with the linoleic acid content.  Four key genes, namely, MDH2, ATP5B, RPL7A and PDGFRA, were screened according to the criteria |GS|>0.2 and |MM|>0.8.  The functional enrichment results showed that the genes within the target modules were mainly enriched in metabolic pathways.  In this study, a large-sample-size transcriptome analysis revealed that metabolic pathways play an important role in the regulation of the linoleic acid content in Tiannong partridge chickens, and MDH2, ATP5B, RPL7A and PDGFRA were screened as important candidate genes affecting the linoleic acid content.  The results of this study provide a theoretical basis for selecting molecular markers and comprehensively understanding the molecular mechanism affecting the linoleic acid content in muscle, providing an important reference for the breeding of slow-type yellow-feathered broiler chickens.

Reference | Related Articles | Metrics
Two new lncRNAs regulate the key immune factor NOD1 and TRAF5 in chicken lymphocyte  
BI Yu-lin, YUAN Xiao-ya, CHEN Ying, CHANG Guo-bin, CHEN Guo-hong
2019, 18 (11): 2589-2597.   DOI: 10.1016/S2095-3119(19)62722-X
Abstract126)      PDF in ScienceDirect      
Reticuloendotheliosis virus (REV) causes the atrophy of immune organs and immuno-suppression in chickens, but the underlying molecular mechanism of the immune response after infection by REV is not well understood.  Presently, the RNA-seq was used to analyze the regulation of immune response to REV in chicken lymphocytes from peripheral blood.  Overall, 134 differentially expressed long non-coding RNAs (lncRNAs) between cells with REV infection or without  in vitro were screened.  Based on the differentially expressed protein-coding genes, the nucleotide-binding oligomerization domain (NOD)-like receptor pathway related to immune regulation was enriched.  Two lncRNAs (L11530 and L09863) were predicted to target the NOD1 and tumor necrosis factor receptor-associated factor 5 (TRAF5) gene, respectively, which are involved in the NOD-like receptor pathway with cis-regulation way.  The in vitro results revealed the significantly up-regulated (P<0.01) levels of lncRNA-L11530 and its target gene, NOD1, and the significantly down-regulated (P<0.05) levels of lncRNA-L09863 and its target gene, TRAF5, in lymphocytes after REV infection.  These changes also occurred in vivo in blood lymphocytes of chickens infected with REV.  Further, L09863 and L11530 were respectively interfered, the expression levels of their target genes NOD1 or TRAF5 were significantly down-regulated, accompanied by the change of IL-8 and IL-18 secretions in lymphocytes.  The NOD-like receptor pathway appears to be important in the immune response to REV, LncRNA-11530 and lncRNA-09863 might involve in the immune regulation on REV infection by targeting NOD1 or TRAF5 in blood lymphocytes of chickens.  Our findings reveal a new regulation of lncRNAs (L11530 and L09863) on immunity in chicken peripheral blood lymphocytes for REV infection by changing the expression of the target genes via the NOD-like receptor pathway. 
 
Reference | Related Articles | Metrics