Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Interactive effect of shade and PEG-induced osmotic stress on physiological responses of soybean seedlings
Muhammad Ahsan ASGHAR, JIANG Heng-ke, SHUI Zhao-wei, CAO Xi-yu, HUANG Xi-yu, Shakeel IMRAN, Bushra AHMAD, ZHANG Hao, YANG Yue-ning, SHANG Jing, YANG Hui, YU Liang, LIU Chun-yan, YANG Wen-yu, SUN Xin, DU Jun-bo
2021, 20 (9): 2382-2394.   DOI: 10.1016/S2095-3119(20)63383-4
Abstract140)      PDF in ScienceDirect      
Intensively farmed crops used to experience numerous environmental stresses.  Among these, shade and drought significantly influence the morpho-physiological and biochemical attributes of plants.  However, the interactive effect of shade and drought  on the growth and development of soybean under dense cropping systems has not been reported yet.  This study investigated the interactive effect of PEG-induced osmotic stress and shade on soybean seedlings.  The soybean cultivar viz., C-103 was subjected to PEG-induced osmotic stress from polyethylene glycol 6000 (PEG-6000) under shading and non-shading conditions.  PEG-induced osmotic stress significantly reduced the relative water contents, morphological parameters, carbohydrates and chlorophyll contents under both light environments.  A significant increase was observed in osmoprotectants, reactive oxygen species and antioxidant enzymes in soybean seedlings.  Henceforth, the findings revealed that, seedlings grown under non-shading conditions produced more malondialdehyde and hydrogen peroxide contents as compared to the shade-treated plants when subjected to PEG-induced osmotic stress.  Likewise, the shaded plants accumulated more sugars and proline than non-shaded ones under drought stress.  Moreover, it was found that non-shaded grown plants were more sensitive to PEG-induced osmotic stress than those exposed to shading conditions, which suggested that shade could boost the protective mechanisms against osmotic stress or at least would not exaggerate the adverse effects of PEG-induced osmotic stress in soybean seedlings.    
Reference | Related Articles | Metrics
Dense planting and nitrogen fertilizer management improve drip-irrigated spring maize yield and nitrogen use efficiency in Northeast China
Liang Fang, Guoqiang Zhang, Bo Ming, Dongping Shen, Zhen Wang, Linli Zhou, Tingting Zhang, Zhongyu Liang, Jun Xue, Ruizhi Xie, Peng Hou, Keru Wang, Jianquan Ye, Shaokun Li
DOI: 10.1016/j.jia.2024.09.032 Online: 26 September 2024
Abstract27)      PDF in ScienceDirect      

Farmers in China often use nitrogen (N) fertilizers to ensure adequate crop growth. However, injudicious applications have increased the risk of environmental pollution, lower maize yields, and reduced profits for farmers.  Appropriate N fertilizer management is crucial for improving yield and nitrogen use efficiency (NUE). This study conducted a three-year experiment involving nine N treatments (0, 45, 90, 135, 180, 225, 270, 315, and 360 kg ha-1) on a field under nitrogen fertilizer precision management (NFPM) in Northeast China.  These results were compared with studies published within the past decade that analyzed yield and dry matter (DM) content under two management practices in Northeast China: conventional nitrogen fertilization management (CNFM) and water-saving fertilization management (WSFM).  The findings reveal that maize yield increases with rising N application rates up to 270 kg ha-1, after which yield decreases.  The kernel number (KN) and kernel weights (KW) of maize grown under NFPM were 13.7 and 14.7% higher than those grown under WSFM, respectively.  Furthermore, they surpassed crops grown under CNFM by 38.4 and 21.2%, respectively.  The maximum total yield of the NFPM treatment was 41.8 and 78.8% higher than WSFM and CNFM, respectively.  Additionally, compared with CNFM and WSFM, NFPM significantly increased nitrogen use efficiency (NUE) across various N-level treatments. Optimizing nitrogen management could help farmers achieve higher yields and promote sustainable agricultural development.

Reference | Related Articles | Metrics