Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Increasing soil microbial biomass nitrogen in crop rotation systems by improving nitrogen resources under nitrogen application
XING Ting-ting, CAI An-dong, LU Chang-ai, YE Hong-ling, WU Hong-liang, HUAI Sheng-chang, WANG Jin-yu, XU Ming-gang, LIN Qi-mei
2022, 21 (5): 1488-1500.   DOI: 10.1016/S2095-3119(21)63673-0
Abstract189)      PDF in ScienceDirect      
Soil microbial biomass nitrogen (MBN) contains the largest proportion of biologically active nitrogen (N) in soil, and is considered as a crucial participant in soil N cycling.  Agronomic management practices such as crop rotation and mono-cropping systems, dramatically affect MBN in agroecosystems.  However, the influence of crop rotation and mono-cropping in agroecosystems on MBN remains unclear.  A meta-analysis based on 203 published studies was conducted to quantify the effect of crop rotation and mono-cropping systems on MBN under synthetic N fertilizer application.  The analysis showed that crop rotation significantly stimulated the response ratio (RR) of MBN to N fertilization and this parameter reached the highest levels in upland-fallow rotations.  Upland mono-cropping did not change the RR of MBN to N application, however, the RR of MBN to N application in paddy mono-cropping increased.  The difference between crop rotation and mono-cropping systems appeared to be due to the various cropping management scenarios, and the pattern, rate and duration of N addition.  Crop rotation systems led to a more positive effect on soil total N (TN) and a smaller reduction in soil pH than mono-cropping systems.  The RR of MBN to N application was positively correlated with the RR of mineral N only in crop rotation systems and with the RR of soil pH only in mono-cropping systems.  Combining the results of Random Forest (RF) model and structural equation model showed that the predominant driving factors of MBN changes in crop rotation systems were soil mineral N and TN, while in mono-cropping systems the main driving factor was soil pH.  Overall, our study indicates that crop rotation can be an effective way to enhance MBN by improving soil N resources, which promote the resistance of MBN to low pH induced by intensive synthetic N fertilizer application.


Reference | Related Articles | Metrics